Преобразование выражений с использованием свойств логарифмов, примеры, решения. Задача B7 — преобразование логарифмических и показательных выражений А2 тождественные преобразования логарифмических выражений


Перечисленные равенства при преобразовании выражений с логарифмами используются как справа налево, так и слева направо.

Стоит заметить, что запоминать следствия из свойств необязательно: при проведении преобразований можно обойтись основными свойствами логарифмов и другими фактами (например, тем, что при b≥0), из которых соответствующие следствия вытекают. «Побочный эффект» такого подхода проявляется лишь в том, что решение будет немного длиннее. К примеру, чтобы обойтись без следствия, которое выражается формулой , а отталкиваться лишь от основных свойств логарифмов, придется провести цепочку преобразований следующего вида: .

То же самое можно сказать и про последнее свойство из приведенного выше списка, которому отвечает формула , так как оно тоже следует из основных свойств логарифмов. Главное понимать, что всегда имеется возможность у степени положительного числа с логарифмом в показателе поменять местами основание степени и число под знаком логарифма. Справедливости ради, заметим, что примеры, подразумевающие осуществление преобразований подобного рода, на практике встречаются редко. Несколько примеров мы приведем ниже по тексту.

Преобразование числовых выражений с логарифмами

Свойства логарифмов вспомнили, теперь пора учиться применять их на практике для преобразования выражений. Естественно начать с преобразования числовых выражений, а не выражений с переменными, так как на них удобнее и проще познавать азы. Так мы и сделаем, причем начнем с очень простых примеров, чтобы научиться выбирать нужное свойство логарифма, но постепенно будем усложнять примеры, вплоть до момента, когда для получения конечного результата нужно будет применять несколько свойств подряд.

Выбор нужного свойства логарифмов

Свойств логарифмов не так мало, и понятно, что нужно уметь выбрать из них подходящее, которое в данном конкретном случае приведет к требуемому результату. Обычно это сделать нетрудно, сопоставив вид преобразуемого логарифма или выражения с видами левых и правых частей формул, выражающих свойства логарифмов. Если левая или правая часть одной из формул совпадает с заданным логарифмом или выражением, то, скорее всего, именно это свойство и надо применять при преобразовании. Следующие примеры это наглядно демонстрируют.

Начнем с примеров преобразования выражений с использованием определения логарифма, которому отвечает формула a log a b =b , a>0 , a≠1 , b>0 .

Пример.

Вычислите, если это возможно: а) 5 log 5 4 , б) 10 lg(1+2·π) , в) , г) 2 log 2 (−7) , д) .

Решение.

В примере под буквой а) явно видна структура a log a b , где a=5 , b=4 . Эти числа удовлетворяют условиям a>0 , a≠1 , b>0 , поэтому можно безбоязненно воспользоваться равенством a log a b =b . Имеем 5 log 5 4=4 .

б) Здесь a=10 , b=1+2·π , условия a>0 , a≠1 , b>0 выполнены. При этом имеет место равенство 10 lg(1+2·π) =1+2·π .

в) И в этом примере мы имеем дело со степенью вида a log a b , где и b=ln15 . Так .

Несмотря на принадлежность к тому же виду a log a b (здесь a=2 , b=−7 ), выражение под буквой г) нельзя преобразовать по формуле a log a b =b . Причина в том, что оно не имеет смысла, так как содержит отрицательное число под знаком логарифма. Более того, число b=−7 не удовлетворяет условию b>0 , что не дает возможности прибегнуть к формуле a log a b =b , так как она требует выполнения условий a>0 , a≠1 , b>0 . Итак, нельзя говорить о вычислении значения 2 log 2 (−7) . В этом случае запись 2 log 2 (−7) =−7 будет ошибкой.

Аналогично и в примере под буквой д) нельзя привести решение вида , так как исходное выражение не имеет смысла.

Ответ:

а) 5 log 5 4 =4 , б) 10 lg(1+2·π) =1+2·π , в) , г), д) выражения не имеют смысла.

Часто бывает полезно преобразование, при котором положительное число представляется в виде степени какого-то положительного и отличного от единицы числа с логарифмом в показателе. В его основе лежит то же определение логарифма a log a b =b , a>0 , a≠1 , b>0 , но формула применяется справа налево, то есть, в виде b=a log a b . Например, 3=e ln3 или 5=5 log 5 5 .

Переходим к применению свойств логарифмов для преобразования выражений.

Пример.

Найдите значение выражения: а) log −2 1 , б) log 1 1 , в) log 0 1 , г) log 7 1 , д) ln1 , е) lg1 , ж) log 3,75 1 , з) log 5·π 7 1 .

Решение.

В примерах под буквами a), б) и в) даны выражения log −2 1 , log 1 1 , log 0 1 , которые не имеет смысла, так как в основании логарифма не должно находиться отрицательное число, нуль или единица, ведь мы определили логарифм лишь для положительного и отличного от единицы основания. Поэтому, в примерах а) - в) не может быть и речи о нахождении значения выражения.

Во всех остальных заданиях, очевидно, в основаниях логарифмов находятся положительные и отличные от единицы числа 7 , e , 10 , 3,75 и 5·π 7 соответственно, а под знаками логарифмов всюду стоят единицы. А нам известно свойство логарифма единицы: log a 1=0 для любого a>0 , a≠1 . Таким образом, значения выражений б) – е) равны нулю.

Ответ:

а), б), в) выражения не имеют смысла, г) log 7 1=0 , д) ln1=0 , е) lg1=0 , ж) log 3,75 1=0 , з) log 5·e 7 1=0 .

Пример.

Вычислить: а) , б) lne , в) lg10 , г) log 5·π 3 −2 (5·π 3 −2) , д) log −3 (−3) , е) log 1 1 .

Решение.

Понятно, что нам предстоит воспользоваться свойством логарифма основания, которому отвечает формула log a a=1 при a>0 , a≠1 . Действительно, в заданиях под всеми буквами число под знаком логарифма совпадает с его основанием. Таким образом, хочется сразу сказать, что значение каждого из заданных выражений есть 1 . Однако не стоит торопиться с выводами: в заданиях под буквами а) – г) значения выражений действительно равны единице, а в заданиях д) и е) исходные выражения не имеют смысла, поэтому нельзя сказать, что значения этих выражений равны 1 .

Ответ:

а) , б) lne=1 , в) lg10=1 , г) log 5·π 3 −2 (5·π 3 −2)=1 , д), е) выражения не имеют смысла.

Пример.

Найти значение: а) log 3 3 11 , б) , в) , г) log −10 (−10) 6 .

Решение.

Очевидно, под знаками логарифмов стоят некоторые степени основания. Исходя из этого, понимаем, что здесь нам пригодится свойство степени основания: log a a p =p , где a>0 , a≠1 и p – любое действительное число. Учитывая это, имеем следующие результаты: а) log 3 3 11 =11 , б) , в) . А можно ли записать аналогичное равенство для примера под буквой г) вида log −10 (−10) 6 =6 ? Нет, нельзя, так как выражение log −10 (−10) 6 не имеет смысла.

Ответ:

а) log 3 3 11 =11 , б) , в) , г) выражение не имеет смысла.

Пример.

Представьте выражение в виде суммы или разности логарифмов по тому же основанию: а) , б) , в) lg((−5)·(−12)) .

Решение.

а) Под знаком логарифма находится произведение, а нам известно свойство логарифма произведения log a (x·y)=log a x+log a y , a>0 , a≠1 , x>0 , y>0 . В нашем случае число в основании логарифма и числа в произведении являются положительными, то есть, удовлетворяют условиям выбранного свойства, поэтому, мы его можем спокойно применять: .

б) Здесь воспользуемся свойством логарифма частного , где a>0 , a≠1 , x>0 , y>0 . В нашем случае основание логарифма есть положительное число e , числитель и знаменатель π положительны, значит, удовлетворяют условиям свойства, поэтому мы имеем право на применение выбранной формулы: .

в) Во-первых, заметим, что выражение lg((−5)·(−12)) имеет смысл. Но при этом для него мы не имеем права применять формулу логарифма произведения log a (x·y)=log a x+log a y , a>0 , a≠1 , x>0 , y>0 , так как числа −5 и −12 – отрицательные и не удовлетворяют условиям x>0 , y>0 . То есть, нельзя провести такое преобразование: lg((−5)·(−12))=lg(−5)+lg(−12) . А что же делать? В подобных случаях исходное выражение нуждается в предварительном преобразовании, позволяющем уйти от отрицательных чисел. Про подобные случаи преобразования выражений с отрицательными числами под знаком логарифма мы подробно поговорим в одном из , а пока приведем решение этого примера, которое понятно наперед и без объяснений: lg((−5)·(−12))=lg(5·12)=lg5+lg12 .

Ответ:

а) , б) , в) lg((−5)·(−12))=lg5+lg12 .

Пример.

Упростить выражение: а) log 3 0,25+log 3 16+log 3 0,5 , б) .

Решение.

Здесь нам помогут все те же свойства логарифма произведения и логарифма частного, которые мы использовали в предыдущих примерах, только сейчас мы будем их применять справа налево. То есть, сумму логарифмов преобразуем в логарифм произведения, а разность логарифмов – в логарифм частного. Имеем
а) log 3 0,25+log 3 16+log 3 0,5=log 3 (0,25·16·0,5)=log 3 2 .
б) .

Ответ:

а) log 3 0,25+log 3 16+log 3 0,5=log 3 2 , б) .

Пример.

Избавьтесь от степени под знаком логарифма: а) log 0,7 5 11 , б) , в) log 3 (−5) 6 .

Решение.

Несложно заметить, что мы имеем дело с выражениями вида log a b p . Соответствующее свойство логарифма имеет вид log a b p =p·log a b , где a>0 , a≠1 , b>0 , p - любое действительное число. То есть, при выполнении условий a>0 , a≠1 , b>0 от логарифма степени log a b p мы можем переходить к произведению p·log a b . Проведем это преобразование с заданными выражениями.

а) В этом случае a=0,7 , b=5 и p=11 . Так log 0,7 5 11 =11·log 0,7 5 .

б) Здесь , условия a>0 , a≠1 , b>0 выполняются. Поэтому

в) Выражение log 3 (−5) 6 имеет ту же структуру log a b p , a=3 , b=−5 , p=6 . Но для b не выполняется условие b>0 , что делает невозможным применение формулы log a b p =p·log a b . Так что же, нельзя справиться с поставленной задачей? Можно, но требуется предварительное преобразование выражения, о котором мы подробно поговорим ниже в пункте под заголовком . Решение будет таким: log 3 (−5) 6 =log 3 5 6 =6·log 3 5 .

Ответ:

а) log 0,7 5 11 =11·log 0,7 5 ,
б)
в) log 3 (−5) 6 =6·log 3 5 .

Довольно часто формулу логарифма степени при проведении преобразований приходится применять справа налево в виде p·log a b=log a b p (при этом требуется выполнение тех же условий для a , b и p ). Например, 3·ln5=ln5 3 и lg2·log 2 3=log 2 3 lg2 .

Пример.

а) Вычислите значение log 2 5 , если из известно, что lg2≈0,3010 и lg5≈0,6990 . б) Представьте дробь в виде логарифма по основанию 3 .

Решение.

а) Формула перехода к новому основанию логарифма позволяет данный логарифм представить в виде отношения десятичных логарифмов, значения которых нам известны: . Остается лишь провести вычисления, имеем .

б) Здесь достаточно воспользоваться формулой перехода к новому основанию, причем применить ее справа налево, то есть, в виде . Получаем .

Ответ:

а) log 2 5≈2,3223 , б) .

На этом этапе мы достаточно скрупулезно рассмотрели преобразование самых простых выражений с использованием основных свойств логарифмов и определения логарифма. В этих примерах нам приходилось применять какое-то одно свойство и ничего более. Теперь со спокойной совестью можно переходить к примерам, преобразование которых требует использования нескольких свойств логарифмов и других дополнительных преобразований. Ими мы и займемся в следующем пункте. Но перед этим еще вкратце остановимся на примерах применения следствий из основных свойств логарифмов.

Пример.

а) Избавьтесь от корня под знаком логарифма . б) Преобразуйте дробь в логарифм по основанию 5 . в) Освободитесь от степеней под знаком логарифма и в его основании . г) Вычислите значение выражения . д) Замените выражение степенью с основанием 3 .

Решение.

а) Если вспомнить про следствие из свойства логарифма степени , то можно сразу давать ответ: .

б) Здесь воспользуемся формулой справа налево, имеем .

в) В данном случае к результату приводит формула . Получаем .

г) А здесь достаточно применить следствие, которому отвечает формула . Так .

д) Свойство логарифма позволяет нам достичь нужного результата: .

Ответ:

а) . б) . в) . г) . д) .

Последовательное применение нескольких свойств

Реальные задания на преобразование выражений с использованием свойств логарифмов обычно сложнее тех, которыми мы занимались в предыдущем пункте. В них, как правило, результат получается не в один шаг, а решение уже состоит в последовательном применении одного свойства за другим вместе с дополнительными тождественными преобразованиями , такими как раскрытие скобок, приведение подобных слагаемых, сокращении дробей и т.п. Так давайте подбираться ближе к таким примерам. Сложного в этом ничего нет, главное действовать аккуратно и последовательно, соблюдая порядок выполнения действий .

Пример.

Вычислить значение выражения (log 3 15−log 3 5)·7 log 7 5 .

Решение.

Разность логарифмов в скобках по свойству логарифма частного можно заменить логарифмом log 3 (15:5) , и дальше вычислить его значение log 3 (15:5)=log 3 3=1 . А значение выражения 7 log 7 5 по определению логарифма равно 5 . Подставим эти результаты в исходное выражение, получаем (log 3 15−log 3 5)·7 log 7 5 =1·5=5 .

Приведем вариант решения без пояснений:
(log 3 15−log 3 5)·7 log 7 5 =log 3 (15:5)·5=
=log 3 3·5=1·5=5 .

Ответ:

(log 3 15−log 3 5)·7 log 7 5 =5 .

Пример.

Чему равно значение числового выражения log 3 log 2 2 3 −1 ?

Решение.

Преобразуем сначала логарифм, находящийся под знаком логарифма, по формуле логарифма степени: log 2 2 3 =3 . Таким образом, log 3 log 2 2 3 =log 3 3 и дальше log 3 3=1 . Так log 3 log 2 2 3 −1=1−1=0 .

Ответ:

log 3 log 2 2 3 −1=0 .

Пример.

Упростить выражение .

Решение.

Формула перехода к новому основанию логарифма позволяет отношение логарифмов по одному основанию представить как log 3 5 . При этом исходное выражение примет вид . По определению логарифма 3 log 3 5 =5 , то есть , а значение полученного выражения в силу того же определения логарифма равно двум.

Вот краткий вариант решения, который обычно и приводится: .

Ответ:

.

Для плавного перехода к информации следующего пункта давайте взглянем на выражения 5 2+log 5 3 , и lg0,01 . Их структура не подходит ни под одно из свойств логарифмов. Так что же получается, их нельзя преобразовать с использованием свойств логарифмов? Можно, если провести предварительные преобразования, подготавливающие данные выражения к применению свойств логарифмов. Так 5 2+log 5 3 =5 2 ·5 log 5 3 =25·3=75 , и lg0,01=lg10 −2 =−2 . Дальше мы подробно разберемся, как осуществляется подобная подготовка выражений.

Подготовка выражений к применению свойств логарифмов

Логарифмы в составе преобразуемого выражения очень часто по структуре записи отличаются от левых и правых частей формул, отвечающих свойствам логарифмов. Но не менее часто преобразование этих выражений подразумевает использование свойств логарифмов: для их использования лишь требуется предварительная подготовка. А заключается эта подготовка в проведении определенных тождественных преобразований, приводящих логарифмы к виду, удобному для применения свойств.

Справедливости ради, заметим, что в качестве предварительных преобразований могут выступать практически любые преобразования выражений, от банального приведения подобных слагаемых до применения тригонометрических формул. Это и понятно, так как преобразуемые выражения могут содержать какие угодно математические объекты: скобки, модули, дроби, корни, степени и т.д. Таким образом, нужно быть готовым выполнить любое требующееся преобразование, чтобы дальше получить возможность воспользоваться свойствами логарифмов.

Сразу скажем, что в этом пункте мы не ставим перед собой задачу классифицировать и разобрать все мыслимые предварительные преобразования, позволяющие в дальнейшем применить свойства логарифмов или определение логарифма. Здесь мы остановимся лишь на четырех из них, которые наиболее характерны и наиболее часто встречаются на практике.

А теперь подробно о каждом из них, после чего в рамках нашей темы останется лишь разобраться с преобразованием выражений с переменными под знаками логарифмов.

Выделение степеней под знаком логарифма и в его основании

Начнем сразу с примера. Пусть перед нами логарифм . Очевидно, в таком виде его структура не располагает к применению свойств логарифмов. А можно ли как-нибудь преобразовать данное выражение, чтобы упростить его, а еще лучше вычислить его значение? Для ответа на этот вопрос давайте внимательно поглядим на числа 81 и 1/9 в контексте нашего примера. Здесь несложно заметить, что эти числа допускают представление в виде степени числа 3 , действительно, 81=3 4 и 1/9=3 −2 . При этом исходный логарифм представляется в виде и появляется возможность применения формулы . Итак, .

Анализ разобранного примера рождает следующую мысль: при возможности можно попробовать выделить степень под знаком логарифма и в его основании, чтобы применить свойство логарифма степени или его следствия. Остается только выяснить, как эти степени выделять. Дадим некоторые рекомендации по этому вопросу.

Иногда довольно очевидно, что число под знаком логарифма и/или в его основании представляет собой некоторую целую степень, как в рассмотренном выше примере. Практически постоянно приходится иметь дело со степенями двойки, которые хорошо примелькались: 4=2 2 , 8=2 3 , 16=2 4 , 32=2 5 , 64=2 6 , 128=2 7 , 256=2 8 , 512=2 9 , 1024=2 10 . Это же можно сказать и про степени тройки: 9=3 2 , 27=3 3 , 81=3 4 , 243=3 5 , … Вообще, не помешает, если перед глазами будет находиться таблица степеней натуральных чисел в пределах десятка. Также не составляет труда работать с целыми степенями десяти, ста, тысячи и т.д.

Пример.

Вычислить значение или упростить выражение: а) log 6 216 , б) , в) log 0,000001 0,001 .

Решение.

а) Очевидно, что 216=6 3 , поэтому log 6 216=log 6 6 3 =3 .

б) Таблица степеней натуральных чисел позволяет представить числа 343 и 1/243 в виде степеней 7 3 и 3 −4 соответственно. Поэтому возможно следующее преобразование заданного логарифма:

в) Так как 0,000001=10 −6 и 0,001=10 −3 , то log 0,000001 0,001=log 10 −6 10 −3 =(−3)/(−6)=1/2 .

Ответ:

а) log 6 216=3 , б) , в) log 0,000001 0,001=1/2 .

В более сложных случаях для выделения степеней чисел приходится прибегать к .

Пример.

Преобразуйте выражение к более простому виду log 3 648·log 2 3 .

Решение.

Давайте посмотрим, что представляет собой разложение числа 648 на простые множители:

То есть, 648=2 3 ·3 4 . Таким образом, log 3 648·log 2 3=log 3 (2 3 ·3 4)·log 2 3 .

Теперь логарифм произведения преобразуем в сумму логарифмов, после чего применим свойства логарифма степени:
log 3 (2 3 ·3 4)·log 2 3=(log 3 2 3 +log 3 3 4)·log 2 3=
=(3·log 3 2+4)·log 2 3 .

В силу следствия из свойства логарифма степени, которому отвечает формула , произведение log32·log23 представляет собой произведение , а оно, как известно, равно единице. Учитывая это, получаем 3·log 3 2·log 2 3+4·log 2 3=3·1+4·log 2 3=3+4·log 2 3 .

Ответ:

log 3 648·log 2 3=3+4·log 2 3 .

Довольно часто выражения под знаком логарифма и в его основании представляют собой произведения или отношения корней и/или степеней некоторых чисел, например, , . Подобные выражения можно представить в виде степени. Для этого осуществляется переход от корней к степеням , и применяются и . Указанные преобразования позволяют выделить степени под знаком логарифма и в его основании, после чего применить свойства логарифмов.

Пример.

Вычислите: а) , б) .

Решение.

а) Выражение в основании логарифма есть произведение степеней с одинаковыми основаниями, по соответствующему свойству степеней имеем 5 2 ·5 −0,5 ·5 −1 =5 2−0,5−1 =5 0,5 .

Теперь преобразуем дробь под знаком логарифма: перейдем от корня к степени, после чего воспользуемся свойством отношения степеней с одинаковыми основаниями: .

Остается подставить полученные результаты в исходное выражение, воспользоваться формулой и закончить преобразования:

б) Так как 729=3 6 , а 1/9=3 −2 , то исходное выражение можно переписать в виде .

Дальше применяем свойство корня из степени, осуществляем переход от корня к степени и используем свойство отношения степеней, чтобы преобразовать основание логарифма в степень: .

Учитывая последний результат, имеем .

Ответ:

а) , б) .

Понятно, что в общем случае для получения степеней под знаком логарифма и в его основании могут требоваться различные преобразования различных выражений. Приведем пару примеров.

Пример.

Чему равно значение выражения: а) , б) .

Решение.

Дальше отмечаем, что заданное выражение имеет вид log A B p , где A=2 , B=x+1 и p=4 . Числовые выражения подобного вида мы преобразовывали по свойству логарифма степени log a b p =p·log a b , поэтому, с заданным выражением хочется поступить аналогично, и от log 2 (x+1) 4 перейти к 4·log 2 (x+1) . А теперь давайте вычислим значение исходного выражения и выражения, полученного после преобразования, например, при x=−2 . Имеем log 2 (−2+1) 4 =log 2 1=0 , а 4·log 2 (−2+1)=4·log 2 (−1) - не имеющее смысла выражение. Это вызывает закономерный вопрос: «Что мы сделали не так»?

А причина в следующем: мы выполнили преобразование log 2 (x+1) 4 =4·log 2 (x+1) , опираясь на формулу log a b p =p·log a b , но данную формулу мы имеем право применять лишь при выполнении условий a>0 , a≠1 , b>0 , p - любое действительное число. То есть, проделанное нами преобразование имеет место, если x+1>0 , что то же самое x>−1 (для A и p – условия выполнены). Однако в нашем случае ОДЗ переменной x для исходного выражения состоит не только из промежутка x>−1 , но и из промежутка x<−1 . Но для x<−1 мы не имели права осуществлять преобразование по выбранной формуле.

Необходимость учета ОДЗ

Продолжим разбирать преобразование выбранного нами выражения log 2 (x+1) 4 , и сейчас посмотрим, что происходит с ОДЗ при переходе к выражению 4·log 2 (x+1) . В предыдущем пункте мы нашли ОДЗ исходного выражения – это есть множество (−∞, −1)∪(−1, +∞) . Теперь найдем область допустимых значений переменной x для выражения 4·log 2 (x+1) . Она определяется условием x+1>0 , которому отвечает множество (−1, +∞) . Очевидно, что при переходе от log 2 (x+1) 4 к 4·log 2 (x+1) происходит сужение области допустимых значений. А мы договорились избегать преобразований, приводящих к сужению ОДЗ, так как это может приводить к различным негативным последствиям.

Здесь для себя стоит отметить, что полезно контролировать ОДЗ на каждом шаге преобразования и не допускать ее сужения. И если вдруг на каком-то этапе преобразования произошло сужение ОДЗ, то стоит очень внимательно посмотреть, а допустимо ли данное преобразование и имели ли мы право его проводить.

Справедливости ради скажем, что на практике обычно приходится работать с выражениями, у которых ОДЗ переменных такова, что позволяет при проведении преобразований использовать свойства логарифмов без ограничений в уже известном нам виде, причем как слева направо, так и справа налево. К этому быстро привыкаешь, и начинаешь проводить преобразования механически, не задумываясь, а можно ли было их проводить. И в такие моменты, как назло, проскальзывают более сложные примеры, в которых неаккуратное применение свойств логарифмов приводит к ошибкам. Так что нужно всегда быть на чеку, и следить, чтобы не происходило сужения ОДЗ.

Не помешает отдельно выделить основные преобразования на базе свойств логарифмов, которые нужно проводить очень внимательно, которые могут приводить к сужению ОДЗ, и как следствие – к ошибкам:

Некоторые преобразования выражений по свойствам логарифмов могут приводить и к обратному - расширению ОДЗ. Например, переход от 4·log 2 (x+1) к log 2 (x+1) 4 расширяет ОДЗ с множества (−1, +∞) до (−∞, −1)∪(−1, +∞) . Такие преобразования имеют место, если оставаться в рамках ОДЗ для исходного выражения. Так только что упомянутое преобразование 4·log 2 (x+1)=log 2 (x+1) 4 имеет место на ОДЗ переменной x для исходного выражения 4·log 2 (x+1) , то есть, при x+1>0 , что то же самое (−1, +∞) .

Теперь, когда мы обговорили нюансы, на которые нужно обращать внимание при преобразовании выражений с переменными с использованием свойств логарифмов, остается разобраться, как правильно нужно эти преобразования проводить.

X+2>0 . Выполняется ли оно в нашем случае? Для ответа на этот вопрос взглянем на ОДЗ переменной x . Она определяется системой неравенств , которая равносильна условию x+2>0 (при необходимости смотрите статью решение систем неравенств ). Таким образом, мы можем спокойно применять свойство логарифма степени.

Имеем
3·lg(x+2) 7 −lg(x+2)−5·lg(x+2) 4 =
=3·7·lg(x+2)−lg(x+2)−5·4·lg(x+2)=
=21·lg(x+2)−lg(x+2)−20·lg(x+2)=
=(21−1−20)·lg(x+2)=0 .

Можно действовать и иначе, благо ОДЗ позволяет это делать, например так:

Ответ:

3·lg(x+2) 7 −lg(x+2)−5·lg(x+2) 4 =0 .

А что делать, когда на ОДЗ не выполняются условия, сопутствующие свойствам логарифмов? Будем разбираться с этим на примерах.

Пусть от нас требуется упростить выражение lg(x+2) 4 −lg(x+2) 2 . Преобразование этого выражения, в отличие от выражения из предыдущего примера, не допускает вольготного использования свойства логарифма степени. Почему? ОДЗ переменной x в данном случае представляет собой объединение двух промежутков x>−2 и x<−2 . При x>−2 мы можем спокойно применять свойство логарифма степени и действовать как в разобранном выше примере: lg(x+2) 4 −lg(x+2) 2 =4·lg(x+2)−2·lg(x+2)=2·lg(x+2) . Но ОДЗ содержит еще один промежуток x+2<0 , для которого последнее преобразование будет некорректно. Что же делать при x+2<0 ? В подобных случаях на помощь приходит . Определение модуля позволяет выражение x+2 при x+2<0 представить как −|x+2| . Тогда при x+2<0 от lg(x+2) 4 −lg(x+2) 2 переходим к lg(−|x+2|) 4 −lg(−|x+2|) 2 и дальше в силу свойств степени к lg|x+2| 4 −lg|x+2| 2 . Полученное выражение можно преобразовывать по свойству логарифма степени, так как |x+2|>0 при любых значениях переменной. Имеем lg|x+2| 4 −lg|x+2| 2 =4·lg|x+2|−2·lg|x+2|=2·lg|x+2| . Теперь можно освободиться от модуля, так как он свое дело сделал. Так как мы проводим преобразование при x+2<0 , то 2·lg|x+2|=2·lg(−(x+2)) . Итак, можно считать, что мы справились с поставленной задачей. Ответ: . Полученный результат можно записать компактно с использованием модуля как .

Рассмотрим еще один пример, чтобы работа с модулями стала привычной. Пусть мы задумали от выражения перейти к сумме и разности логарифмов линейных двучленов x−1 , x−2 и x−3 . Сначала находим ОДЗ:

На промежутке (3, +∞) значения выражений x−1 , x−2 и x−3 – положительные, поэтому мы спокойно можем применять свойства логарифма суммы и разности:

А на интервале (1, 2) значения выражения x−1 – положительные, а значения выражений x−2 и x−3 – отрицательные. Поэтому, на рассматриваемом интервале представляем x−2 и x−3 с использованием модуля как −|x−2| и −|x−3| соответственно. При этом

Теперь можно применять свойства логарифма произведения и частного, так как на рассматриваемом интервале (1, 2) значения выражений x−1 , |x−2| и |x−3| - положительные.

Имеем

Полученные результаты можно объединить:

Вообще, аналогичные рассуждения позволяют на базе формул логарифма произведения, отношения и степени получить три практически полезных результата, которыми довольно удобно пользоваться:

  • Логарифм произведения двух произвольных выражений X и Y вида log a (X·Y) можно заменить суммой логарифмов log a |X|+log a |Y| , a>0 , a≠1 .
  • Логарифм частного вида log a (X:Y) можно заменить разностью логарифмов log a |X|−log a |Y| , a>0 , a≠1 , X и Y – произвольные выражения.
  • От логарифма некоторого выражения B в четной степени p вида log a B p можно перейти к выражению p·log a |B| , где a>0 , a≠1 , p – четное число и B – произвольное выражение.

Аналогичные результаты приведены, например, в указаниях к решению показательных и логарифмических уравнений в сборнике задач по математике для поступающих в вузы под редакцией М. И. Сканави .

Пример.

Упростите выражение .

Решение.

Было бы хорошо применить свойства логарифма степени, суммы и разности. Но можем ли мы здесь это делать? Для ответа на этот вопрос нам требуется знать ОДЗ.

Определим ее:

Довольно очевидно, что выражения x+4 , x−2 и (x+4) 13 на области допустимых значений переменной x могут принимать как положительные, так и отрицательные значения. Поэтому нам придется действовать через модули.

Свойства модуля позволяют переписать как , поэтому

Также ничто не мешает воспользоваться свойством логарифма степени, после чего привести подобные слагаемые:

К такому же результату приводит и другая последовательность преобразований:

и так как на ОДЗ выражение x−2 может принимать как положительные, так и отрицательные значения, то при вынесении четного показателя степени 14

Математика. Тематические тесты. Часть II. Подготовка к ЕГЭ-2010. 10-11 классы. Под ред. Лысенко Ф.Ф. - Ростов н/Д.: Легион, 2009. - 176с.

Математика. ЕГЭ-2009. Тематические тесты. Ч.II (В4-В8, С1-С2) Под ред. Лысенко Ф.Ф. - Ростов н/ Д: Легион, 2008 - 160 с.

Пособие состоит из тестов по отдельным темам, которые являются традиционными в курсе математики и потому, как правило, входят в ЕГЭ. Они полностью охватывают группы заданий повышенного и высокого уровня сложности ЕГЭ, кроме текстовых задач и задач по геометрии. По каждой теме предлагается один или более комплектов тестов. В каждом комплекте по 10 тестов, в каждом тесте содержится 8 заданий.

Цель настоящей книги - отработать задания с кратким и развернутым ответом тестов ЕГЭ. Она необходима в первую очередь выпускникам, рассчитывающим получить на ЕГЭ хорошую оценку, а также учащимся 10-х классов, которые могут закрепить пройденные темы под углом зрения ЕГЭ. Предлагаемое пособие может быть полезно всем выпускникам, готовящимся к ЕГЭ по математике, а также педагогам, осуществляющим подготовку учащихся к ЕГЭ.

Формат: djvu / zip (2009 , 176с.)

Размер: 2,5 Мб

Скачать / Download файл 14

Формат: pdf (2009 , 176с.)

Размер: 8 ,6 Мб

Скачать: 14 .12.2018г, ссылки удалены по требованию изд-ва "Легион" (см. примечание)

Формат: djvu / zip (2008 , 160с.)

Размер: 3 Мб

Скачать / Download файл 14 .12.2018г, ссылки удалены по требованию изд-ва "Легион" (см. примечание)

Формат: pdf (2008 , 160с.)

Размер: 9 ,9 Мб

Скачать: 14 .12.2018г, ссылки удалены по требованию изд-ва "Легион" (см. примечание)

Учебно-методический комплекс "Математика. ЕГЭ-2010" под ред. Лысенко Ф.Ф. и Кулабухова С.Ю. включает учебные пособия:
1. Математика. Подготовка к ЕГЭ-2010.
2. Решебник. Математика. Подготовка к ЕГЭ-2010.
3. Математика. Тематические тесты. Часть I (базовый уровень). Подготовка к ЕГЭ-2010. 10-11 классы.
4. Математика. Тематические тесты. Часть II. Подготовка к ЕГЭ-2010. 10-11 классы.
5. Математика. Тематические тесты: геометрия, текстовые задачи. Подготовка к ЕГЭ-2010. 10-11 классы.
6. Математика. Сборник тестов ЕГЭ 2001 - 2010.
7. Математика. Подготовка к ЕГЭ-2010. Учебно-тренировочные тесты.
8. Карманный справочник по математике.

Оглавление
От авторов 11
§ 1. Тождественные преобразования логарифмических выражений 13
Вариант №1 13
Вариант №2 13
Вариант №3 14
Вариант №4 14
Вариант №5 15
Вариант №6 15
Вариант №7 16
Вариант №8 16
Вариант №9 17
Вариант №10 17
§ 2. Тождественные преобразования выражений, содержащих степень 18
Вариант №1 18
Вариант №2 19
Вариант №3 19
Вариант №4 20
Вариант №5 21
Вариант №6 21
Вариант №7 22
Вариант №8 23
Вариант №9 23
Вариант №10 24
§ 3. Тождественные преобразования иррациональных выражений 25
Вариант №1 25
Вариант №2 25
Вариант №3 26
Вариант №4 26
Вариант №5 27
Вариант №6 28
Вариант №7 28
Вариант №8 29
Вариант №9 30
Вариант №10 30
§ 4. Системы уравнений 31
Вариант №1 31
Вариант №2 32
Вариант №3 33
Вариант №4 33
Вариант №5 34
Вариант №6 35
Вариант №7 36
Вариант №8 37
Вариант №9 38
Вариант №10 39
§ 5. Геометрический смысл производной 39
Вариант №1 39
Вариант №2 41
Вариант №3 43
Вариант №4 44
Вариант №5 46
Вариант №6 48
Вариант №7 50
Вариант №8 52
Вариант №9 54
Вариант №10 55
§ 6. Неравенства 56
Вариант №1 г 56
Вариант №2 57
Вариант №3 58
Вариант №4 58
Вариант №5 59
Вариант №6 60
Вариант №7 60
Вариант №8 61
Вариант №9 62
Вариант №10 63
§ 7. Иррациональные уравнения 63
Вариант №1 63
Вариант №2 64
Вариант №3 65
Вариант №4 65
Вариант №5 66
Вариант №6 66
Вариант №7 67
Вариант №8 67
Вариант №9 68
Вариант №Ю 68
§ 8. Тригонометрические уравнения 69
Вариант №1 69
Вариант №2 69
Вариант №3 70
Вариант №4 70
Вариант №5 71
Вариант №6 72
Вариант №7 72
Вариант №8 73
Вариант №9 74
Вариант №10 74
§ 9. Логарифмические уравнения 75
Вариант №1 75
Вариант №2 75
Вариант №3 76
Вариант №4 76
Вариант №5 77
Вариант №6 77
Вариант №7 78
Вариант №8 * 78
Вариант №9 79
Вариант №10 79
§ 10. Показательные уравнения 80
Вариант №1 80
Вариант №2 80
Вариант №3 81
Вариант №4 81
Вариант №5 82
Вариант №6 82
Вариант №7 83
Вариант №8 83
Вариант №9 84
Вариант №10 84
§11. Периодичность, чётность и нечётность функций 85
Вариант №1 85
Вариант №2 86
Вариант №3 87
Вариант №4 89
Вариант №5 90
Вариант №6 91
Вариант №7 92
Вариант №8 93
Вариант №9 94
Вариант №10 95
§ 12. Нули сложной функции. Ограниченность функции 97
Вариант №1 97
Вариант №2 97
Вариант №3 98
Вариант №4 98
Вариант №5 99
Вариант №6 99
Вариант №7 100
Вариант №8 100
Вариант №9 101
Вариант №10 101
§ 13. Область определения, множество значений, монотонность функций 102
Вариант №1 102
Вариант №2 102
Вариант №3 103
Вариант №4 103
Вариант №5 104
Вариант №6 104
Вариант №7 105
Вариант №8 105
Вариант №9 106
Вариант №10 107
§ 14. Экстремумы функции. Наибольшее и наименьшее значения функции 107
Вариант №1 107
Вариант №2 108
Вариант №3 108
Вариант №4 109
Вариант №5 109
Вариант №6 110
Вариант №7 110
Вариант №8 111
Вариант №9 111
Вариант №10 112
§ 15. Различные приёмы при решении логарифмических уравнений 113
Вариант №1 113
Вариант №2 113
Вариант №3 114
Вариант №4 114
Вариант №5 115
Вариант №6 115
Вариант №7 116
Вариант №8 116
Вариант №9 117
Вариант №10 117
§ 16. Различные приёмы при решении тригонометрических уравнений 118
Вариант №1 118
Вариант №2 118
Вариант №3 118
Вариант №4 119
Вариант №5 119
Вариант №6 120
Вариант №7 120
Вариант №8 121
Вариант №9 121
Вариант №10 122
§ 17. Различные приёмы при решении иррациональных уравнений 123
Вариант №1 123
Вариант №2 123
Вариант №3 124
Вариант №4 124
Вариант №5 125
Вариант №6 125
Вариант №7 125
Вариант №8 126
Вариант №9 126
Вариант № 10 127
§ 18. Уравнения, содержащие переменную под знаком модуля 127
Вариант №1 127
Вариант №2 128
Вариант №3 128
Вариант №4 129
Вариант №5 129
Вариант №6 130
Вариант №7 130
Вариант №8 131
Вариант №9 131
Вариант №10 131
§ 19. Различные приёмы при решении показательных уравнений.132
Вариант №1 132
Вариант №2 133
Вариант №3 133
Вариант №4 134
Вариант №5 134
Вариант №6 135
Вариант №7 135
Вариант №8 135
Вариант №9 136
Вариант №10 136
§ 20. Различные приёмы при решении комбинированных уравнений 137
Вариант №1 137
Вариант №2 137
Вариант №3 138
Вариант №4 138
Вариант №5 139
Вариант №6 139
Вариант №7 140
Вариант №8 140
Вариант №9 141
Вариант №10 141
§ 21. Уравнения с параметром, содержащие модуль 142
Вариант №1 142
Вариант №2 142
Вариант №3 143
Вариант №4 144
Вариант №5 144
Вариант №6 145
Вариант №7 146
Вариант №8 146
Вариант №9 147
Вариант №10 148
Ответы 149
§ 1. Тождественные преобразования логарифмических выражений 149
§ 2. Тождественные преобразования выражений, содержащих степень 150
§ 3. Тождественные преобразования иррациональных выражений 150
§ 4. Системы уравнений 151
§ 5. Геометрический смысл производной 151
§ 6. Неравенства 152
§ 7. Иррациональные уравнения 152
§ 8. Тригонометрические уравнения 153
§ 9. Логарифмические уравнения 153
§ 10. Показательные уравнения 154
§11. Периодичность, четность и нечетность функций 154
§ 12. Нули сложной функции. Ограниченность функции 155
§ 13. Область определения, множество значений, монотонность функций 156
§ 14. Экстремумы функции. Наибольшее и наименьшее значения функции 158
§ 15. Различные приемы при решении логарифмических уравнений 159
§ 16. Различные приемы при решении тригонометрических уравнений 160
§ 17. Различные приемы при решении иррациональных уравнений 164
§ 18. Уравнения, содержащие переменную под знаком модуля 165
§ 19. Различные приемы при решении показательных уравнений.166
§ 20. Различные приемы при решении комбинированных уравнений 167
§ 21. Уравнения с параметром, содержащие модуль 169
Литература 170


Сейчас мы взглянем на преобразование выражений, содержащих логарифмы, с общих позиций. Здесь мы разберем не только преобразование выражений с использованием свойств логарифмов, а рассмотрим преобразование выражений с логарифмами общего вида, которые содержат не только логарифмы, но и степени, дроби, корни и т.д. Весь материал по обыкновению будем снабжать характерными примерами с детальными описаниями решений.

Навигация по странице.

Выражения с логарифмами и логарифмические выражения

Выполнение действий с дробями

В предыдущем пункте мы разобрали основные преобразования, которые проводятся с отдельными дробями, содержащими логарифмы. Эти преобразования, естественно, можно проводить с каждой отдельной дробью, являющейся частью более сложного выражения, например, представляющего собой сумму, разность, произведение и частное подобных дробей. Но помимо работы с отдельными дробями, преобразование выражений указанного вида часто подразумевает выполнение соответствующих действий с дробями. Дальше мы рассмотрим правила, по которым эти действия проводятся.

Еще с 5-6 классов нам известны правила, по которым выполняются . В статье общий взгляд на действия с дробями мы распространили эти правила с обыкновенных дробей на дроби общего вида A/B , где A и B – некоторые числовые, буквенные выражения или выражения с переменными, причем B тождественно не равно нулю. Понятно, что дроби с логарифмами являются частными случаями дробей общего вида. И в связи с этим понятно, что действия с дробями, которые содержат в своих записях логарифмы, проводятся по тем же правилам. А именно:

  • Чтобы сложить или вычесть две дроби с одинаковыми знаменателями, надо соответственно сложить или вычесть числители, а знаменатель оставить прежним.
  • Чтобы сложить или вычесть две дроби с разными знаменателями, надо привести их к общему знаменателю и выполнить соответствующие действия по предыдущему правилу.
  • Чтобы умножить две дроби, надо записать дробь, числителем которой является произведение числителей исходных дробей, а знаменателем – произведение знаменателей.
  • Чтобы разделить дробь на дробь, надо делимую дробь умножить на дробь, обратную делителю, то есть, на дробь, с переставленными местами числителем и знаменателем.

Приведем несколько примеров на выполнение действий с дробями, содержащими логарифмы.

Пример.

Выполните действия с дробями, содержащими логарифмы: а) , б) , в) , г) .

Решение.

а) Знаменатели складываемых дробей, очевидно, одинаковые. Поэтому, согласно правилу сложения дробей с одинаковыми знаменателями складываем числители, а знаменатель оставляем прежним: .

б) Здесь знаменатели различные. Поэтому, сначала нужно привести дроби к одинаковому знаменателю . В нашем случае знаменатели уже представлены в виде произведений, и нам остается взять знаменатель первой дроби и добавить к нему недостающие множители из знаменателя второй дроби. Так мы получим общий знаменатель вида . При этом к общему знаменателю вычитаемые дроби приводятся при помощи дополнительных множителей в виде логарифма и выражения x 2 ·(x+1) соответственно. После этого останется выполнить вычитание дробей с одинаковыми знаменателями, что не представляет сложностей.

Итак, решение таково:

в) Известно, что результатом умножения дробей является дробь, числитель которой есть произведение числителей, а знаменатель – произведение знаменателей, поэтому

Несложно заметить, что можно провести сокращение дроби на двойку и на десятичный логарифм, в результате имеем .

г) Переходим от деления дробей к умножению, заменяя дробь-делитель обратной ей дробью . Так

Числитель полученной дроби можно представить в виде , из которого явно виден общий множитель числителя и знаменателя – множитель x , на него можно сократить дробь:

Ответ:

а) , б) , в) , г) .

Следует помнить, что действия с дробями проводятся с учетом порядка выполнения действий : сначала умножение и деление, затем сложение и вычитание, а если есть скобки, то сначала проводятся действия в скобках.

Пример.

Выполните действия с дробями .

Решение.

Сначала выполняем сложение дробей в скобках, после чего будем проводить умножение:

Ответ:

В этом пункте остается проговорить вслух три довольно очевидных, но в то же время важных момента:

Преобразование выражений с использованием свойств логарифмов

Наиболее часто преобразование выражений с логарифмами подразумевает использование тождеств, выражающих определение логарифма и

Приднестровский государственный университет

им. Т.Г. Шевченко

Физико-математический факультет

Кафедра математического анализа

и методики преподавания математики

КУРСОВАЯ РАБОТА

«Тождественные преобразования

показательных и логарифмических

выражений»

Работу выполнила:

студентка _______ группы

физико-математического ф-та

_________________________

Работу проверила:

_________________________

Тирасполь, 2003г.


Введение……………………………………………………………………2

Глава 1. Тождественные преобразования и методика преподавания в школьном курсе алгебры и начала анализа……………………………………..4

§1. Формирование навыков применения конкретных видов преобразований…………………………………………………………………………….4

§2. Особенности организации системы знаний при изучении тождественных преобразований.…….………………………….………..………….5

§3. Программа по математике ……………………………………….11

Глава 2. Тождественные преобразования и вычисления показательных и логарифмических выражений……………………………...…………………13

§1. Обобщение понятия степени……………………………………..13

§2. Показательная функция…………………………………………..15

§3. Логарифмическая функция……………………………………….16

Глава 3. Тождественные преобразования показательных и логарифмических выражений на практике..........................................................................19

Заключение………………………………………………………………..24

Список использованной литературы…………………………………….25
Введение

В данной курсовой работе будет рассмотрено тождественные преобразования показательной и логарифмической функции, рассмотрена методика преподавания их в школьном курсе алгебры и начала анализа.

Первая глава данной работы описывает методику преподавания тождественных преобразований в школьном курсе математики, так же включает программу по математике в курсе «Алгебры и начала анализа» с изучением показательной и логарифмической функции.

Вторая глава рассматривает непосредственно саму показательную и логарифмическую функции, их основные свойства, используемые при тождественных преобразованиях.

Третья глава – решение примеров и задач с использованием тождественных преобразований показательной и логарифмической функции.

Изучение различных преобразований выражений и формул занимает значительную часть учебного времени в курсе школьной математики. Простейшие преобразования, опирающиеся на свойства арифметических операций, производятся уже в начальной школе и в IV–V классах. Но основную нагрузку по формированию умений и навыков выполнения преобразований несет на себе курс школьной алгебры. Это связано как с резким увеличением числа и разнообразия совершаемых преобразований, так и с усложнением деятельности по их обоснованию и выяснению условий применимости, с выделением и изучением обобщенных понятий тождества, тождественного преобразования, равносильного преобразования, логического следования.

Культура выполнения тождественных преобразований развивается так же, как и культура вычислений, на основе прочных знаний свойств операций над объектами (числами, векторами, многочленами и т. д.) и алгоритмов их выполнения. Она проявляется не только в умении правильно обосновать преобразования, но и в умении найти кратчайший путь перехода от исходного аналитического выражения к выражению, наиболее соответствующему цели преобразования, в умении проследить за изменением области определения аналитических выражений в цепочке тождественных преобразований, в быстроте и безошибочности выполнения преобразований.

Обеспечение высокой культуры вычислений и тождественных преобразований представляет важную проблему обучения математике. Однако эта проблема решается еще далеко не удовлетворительно. Доказательство этому – статистические данные органов народного образования, в которых ежегодно констатируются ошибки и нерациональные приемы вычислений и преобразований, допускаемые учащимися различных классов при выполнении контрольных работ. Это подтверждается и отзывами высших учебных заведений о качестве математических знаний и навыков абитуриентов. Нельзя не согласиться с выводами органов народного образования и вузов о том, что недостаточно высокий уровень культуры вычислений и тождественных преобразований в средней школе является следствием формализма в знаниях учащихся, отрыва теории от практики.


Тождественные преобразования и методика преподавания

в школьном курсе алгебры и начала анализа.

§1. Формирование навыков применения

конкретных видов преобразований.

Система приемов и правил проведения преобразований, используемая на этапе начал алгебры, имеет очень широкую область приложений: она используется в изучении всего курса математики. Однако именно в силу своей малой специфичности эта система нуждается в дополнительных преобразованиях, учитывающих особенности структуры преобразуемых выражений и свойства вновь вводимых операций и функций. Освоение соответствующих видов преобразований начинается с введения формул сокращенного умножения. Затем рассматриваются преобразования, связанные с операцией возведения в степень, с различными классами элементарных функций – показательных, степенных, логарифмических, тригонометрических. Каждый из этих типов преобразований проходит этап изучения, на котором внимание сосредоточивается на усвоении их характерных особенностей.

По мере накопления материала появляется возможность выделить и общие черты всех рассматриваемых преобразований и на этой основе ввести понятия тождественного и равносильного преобразований.

Следует обратить внимание на то, что понятие тождественного преобразования дается в школьном курсе алгебры не в полной общности, а только в применении к выражениям. Преобразования разделяются на два класса: тождественные преобразования – это преобразования выражений, и равносильные – преобразования формул. В случае, когда возникает потребность в упрощении одной части формулы, в этой формуле выделяется выражение, которое и служит аргументом применяемого тождественного преобразования. Соответствующий предикат при этом считается неизменным.

Что касается организации целостной системы преобразований (синтез), то основная её цель состоит в формировании гибкого и мощного; аппарата, пригодного для использования в решении разнообразных учебных заданий.

В курсе алгебры и начал анализа целостная система преобразований, в основных чертах уже сформированная, продолжает постепенно совершенствоваться. К ней также добавляются некоторые новые виды преобразований, однако они только обогащают ее, расширяют ее возможности, но не меняют ее структуру. Методика изучения этих новых преобразований практически не отличается от применяемой в курсе алгебры.

§2. Особенности организации системы заданий

при изучении тождественных преобразований.

Основной принцип организации любой системы заданий – предъявление их от простого к сложному с учетом необходимости преодоления учениками посильных трудностей и создания проблемных ситуаций. Указанный основной принцип требует конкретизации применительно к особенностям данного учебного материала. Для описания различных систем заданий в методике математики используется понятие цикла упражнений. Цикл упражнений характеризуется соединением в последовательности упражнений нескольких аспектов изучения и приемов расположения материала. По отношению к тождественным преобразованиям представление о цикле может быть дано следующим образом.

Цикл упражнений связан с изучением одного тождества, вокруг которого группируются другие тождества, находящиеся с ним в естественной связи. В состав цикла наряду с исполнительными входят задания, требующие распознавания применимости рассматриваемого тождества. Изучаемое тождество применяется для проведения вычислений на различных числовых областях. Учитывается специфика тождества; в частности, организуются связанные с ним обороты речи.

Задания в каждом цикле разбиты на две группы. К первой относятся задания, выполняемые при первоначальном знакомстве с тождеством. Они служат учебным материалом для нескольких идущих подряд уроков, объединенных одной темой. Вторая группа упражнений связывает изучаемое тождество с различными приложениями. Эта группа не образует композиционного единства – упражнения здесь разбросаны по различным темам.

Описанная структура цикла относится к этапу формирования навыков применения конкретных видов преобразований. На заключительном этапе – этапе синтеза циклы видоизменяются. Во-первых, объединяются обе группы заданий, образующие «развернутый» цикл, причем из первой группы исключаются наиболее простые по формулировкам или по сложности выполнения задания. Оставшиеся типы заданий усложняются. Во-вторых, происходит слияние циклов, относящихся к различным тождествам, в силу чего повышается роль действий по распознаванию применимости того или иного тождества.

Отметим особенности циклов заданий, связанных с тождествами для элементарных функций. Эти особенности обусловлены тем, что, во-первых, соответствующие тождества изучаются в связи с изучением функционального материала и, во-вторых, они появляются позже тождеств первой группы и изучаются с использованием уже сформированных навыков проведения тождественных преобразований.

Каждая вновь вводимая элементарная функция резко расширяет область чисел, которые могут быть обозначены и названы индивидуально. Поэтому в первую группу заданий циклов должны войти задания на установление связи этих новых числовых областей с исходной областью рациональных чисел. Приведем примеры таких заданий.


Пример 1. Вычислить:

Рядом с каждым выражением указано тождество, в циклах по которым могут присутствовать предлагаемые задания. Цель таких заданий – в освоении особенностей записей, включающих символы новых операций и функций, и в развитии навыков математической речи.

Значительная часть использования тождественных преобразований, связанных с элементарными функциями, приходится на решение иррациональных и трансцендентных уравнений. В циклы, относящиеся к усвоению тождеств, входят только наиболее простые уравнения, но уже здесь целесообразно проводить работу по усвоению приема решения таких уравнений: сведение его путем замены неизвестного к алгебраическому уравнению.

Последовательность шагов при этом способе решения такова:

а) найти функцию , для которой данное уравнение представимо в виде ;

б) произвести подстановку и решить уравнение ;

в) решить каждое из уравнений , где – множество корней уравнения .

При использовании описанного способа зачастую шаг б) выполняется в неявном виде, без введения обозначения для . Кроме того, ученики зачастую предпочитают из различных путей, ведущих к нахождению ответа, выбирать тот, который быстрее и проще приводит к алгебраическому уравнению.

Пример 2. Решить уравнение .

Первый способ:

Второй способ:

а)

б)

Здесь видно, что при первом способе шаг а) сложнее, чем при втором. Первым способом «труднее начать», хотя дальнейший ход решения значительно проще. С другой стороны, у второго способа имеются достоинства, состоящие в большей легкости, большей отработанности в обучении сведения к алгебраическому уравнению.

Для школьного курса алгебры типичны задания, в которых переход к алгебраическому уравнению осуществляется даже еще проще, чем в данном примере. Основная нагрузка таких заданий относится к выделению шага в) как самостоятельной части процесса решения, связанного с использованием свойств изучаемой элементарной функции.

Пример 3. Решить уравнение:

а) ; б) .

Эти уравнения сводятся к уравнениям: а) или ; б) или . Для решения этих уравнений требуется знание лишь простейших фактов о показательной функции: ее монотонность, область значений. Как и задание предыдущего примера, уравнения а) и б) можно отнести к первой группе цикла упражнений на решение квадратно-показательных уравнений.

Таким образом, приходим к классификации заданий в циклах, относящихся к решению трансцендентных уравнений, включающих показательную функцию:

1) уравнения, сводящиеся к уравнениям вида и имеющие простой, общий по форме ответ: ;

2) уравнения, сводящиеся к уравнениям , где – целое число, или , где ;

3) уравнения, сводящиеся к уравнениям и требующие явного анализа формы, в которой записано число .

Аналогично можно классифицировать задания и для других элементарных функций.

Значительная часть тождеств, изучаемых в курсах алгебры и алгебры и начал анализа, доказывается в них или, по крайней мере, поясняется. Эта сторона изучения тождеств имеет большое значение для обоих курсов, поскольку доказательные рассуждения в них с наибольшей четкостью и строгостью проводятся именно по отношению к тождествам. За пределами этого материала доказательства обычно менее полны, они не всегда выделяются из состава применяемых средств обоснования.

В качестве опоры, на которой строятся доказательства тождеств, используются свойства арифметических операций.

Воспитательное воздействие вычислений и тождественных преобразований может быть, направлено на развитие логического мышления, если только от учащихся будут систематически требоваться обоснования вычислений и тождественных преобразований, на развитие функционального мышления, что достигается различными путями. Совершенно очевидно значение вычислений и тождественных преобразований в развитии воли, памяти, сообразительности, самоконтроля, творческой инициативы.

Запросы бытовой, производственной вычислительной практики требуют формирования у учащихся прочных, автоматизированных навыков рациональных вычислений и тождественных преобразований. Эти навыки вырабатываются в процессе любой вычислительной работы, тем не менее, необходимы специальные тренировочные упражнения в быстрых вычислениях и преобразованиях.

Так, если на уроке предполагается решение логарифмических уравнений с использованием основного логарифмического тождества , то полезно в план урока включить устные упражнения на упрощение или вычисление значений выражений: , , . Цель упражнений всегда сообщается учащимся. В ходе выполнения упражнения может возникнуть необходимость потребовать от учащихся обоснований отдельных преобразований, действий или решения всей задачи, даже если это не планировалось. Там, где возможны различные способы решения задачи, желательно всегда ставить вопросы: «Каким способом решалась задача?», «Кто решил задачу другим способом?»

Понятия тождества и тождественного преобразования, они явно вводятся в курсе алгебры VI класса. Само определение тождественных выражений не может быть практически использовано для доказательства тождественности двух выражений, и понять, что сущность тождественных преобразований состоит в применении к выражению определений и свойств тех действий, которые указаны в выражении, или в прибавлении к нему выражения, тождественно равного 0, или в умножении его на выражение, тождественно равное единице. Но, даже усвоив эти положения, учащиеся часто не понимают, почему указанные преобразования позволяют утверждать, что исходное и полученное выражение тождественны, т.е. принимают одинаковые значения при любых системах (наборах) значений переменных.

Важно так же добиться, что бы учащиеся хорошо понимали, что такие выводы тождественных преобразований, являются следствиями определений и свойств соответствующих действий.

Аппарат тождественных преобразований, накопленный в предшествующие годы, в VI классе расширяется. Это расширение начинается введением тождества, выражающего свойство произведения степеней с одинаковыми основаниями: , где , – целые числа.

§3. Программа по математике. В школьном курсе «Алгебра и начала анализа» учащиеся систематически изучают показательную и логарифмическую функции и их свойства, тождественные преобразования логарифмических и показательных выражений и их применение к решению соответствующих уравнений и неравенств, знакомятся с основными понятиями, утверждениями. В XI классе на уроки алгебры уходит по 3 часа в неделю, всего получается 102 часа в год. На изучение показательной, логарифмической и степенной функции по программе уходит 36 часов. В программу входит рассмотрение и изучение следующих вопросов: Понятие о степени с рациональным показателем. Решение иррациональных уравнений. Показательная функция, её свойства и график. тождественные преобразования показательных выражений. Решение показательных уравнений и неравенств. Логарифм числа. Основные свойства логарифмов. Логарифмическая функция, её свойства и график. Решение логарифмических уравнений и неравенств. Производная показательной функции. Число и натуральный логарифм. Производная степенной функции. Основной целью раздела изучения показательной и логарифмической функции является ознакомление учащихся с показательной, логарифмической и степенной функцией; научить учащихся решать показательные и логарифмические уравнения и неравенства. Понятия корня -ой степени и степени с рациональным показателем являются обобщением понятий квадратного корня и степени с целым показателем. Следует обратить внимание учащихся, что рассматриваемые здесь свойства корней и степеней с рациональным показателем аналогичны тем свойствам, которыми обладают изученные ранее квадратные корни и степени с целыми показателями. Необходимо уделить достаточно времени отработке свойств степеней и формированию навыков тождественных преобразований. Понятие степени с иррациональным показателем вводится на наглядно-интуитивной основе. Этот материал играет вспомогательную роль и используется при введении показательной функции. Изучение свойств показательной, логарифмической и степенной функции построено в соответствии с принятой общей схемой исследования функций. При этом обзор свойств дается в зависимости от значений параметров. Показательные и логарифмические неравенства решаются с опорой на изученные свойства функций. Характерной особенностью курса являются систематизация и обобщение знаний учащихся, закрепление и развитие умений и навыков, полученных в курсе алгебры, что осуществляется как при изучении нового материала, так и при проведении обобщающего повторения.
Глава 2. Тождественные преобразования и вычисления показательных и логарифмических выражений

§1. Обобщение понятия степени.

Определение: Корнем -ой степени из чиста называется такое число, -я степень которого равна .

Согласно данному определению корень -ой степени из числа – это решение уравнения . Число корней этого уравнения зависит от и . Рассмотрим функцию . Как известно, на промежутке эта функция при любом возрастает и принимает все значения из промежутка . По теореме о корне уравнение для любого имеет неотрицательный корень и при том только один. Его называют арифметическим корнем -ой степени из числа и обозначают ; число называют показателем корня, а само число – подкоренным выражением. Знак называют так же радикалом.

Определение: Арифметическим корнем -ой степени из числа называют неотрицательное число, -я степень которого равна .

При четных функция четна. Отсюда следует, что если , то уравнение , кроме корня , имеет также корень . Если , то корень один: ; если , то это уравнение корней не имеет, поскольку четная степень любого числа неотрицательна.

При нечетных значениях функция возрастает на всей числовой прямой; её область значений – множество всех действительных чисел. Применяя теорему о корне, находим, что уравнение имеет один корень при любом и, в частности, при . Этот корень для любого значения обозначают .

Для корней нечетной степени справедливо равенство . В самом деле, , т.е. число – есть корень -й степени из . Но такой корень при нечетном единственный. Следовательно, .

Замечание 1: Для любого действительного

Напомним известные свойства арифметических корней -ой степени.

Для любого натурального , целого и любых неотрицательных целых чисел и справедливы равенства:

1.

2.

3.

4.

Степень с рациональным показателем.

Выражение определено для всех и , кроме случая при . Напомним свойства таких степеней.

Для любых чисел , и любых целых чисел и справедливы равенства:

Отметим так же, что если , то при и при .. и

Учащихся к ЕГЭ, учителя математики СОШ №26 г.Якутска используют перечень вопросов содержания (кодификатор) школьного курса математики, усвоение которых проверяется при сдачи единого государственного экзамена 2007г. Элективный курс по подготовке к Единому Государственному Экзамену основан на повторении, систематизации и углублении знаний полученных ранее. Занятия проходят в форме свободного...