Схемы устройств для восстановления(регенерации) гальванических элементов питания (батареек). Зарядное устройство для батареек (016) Восстановление гальванических элементов и батарей

Электропитание РЕГЕНЕРАЦИЯ ГАЛЬВАНИЧЕСКИХ ЭЛЕМЕНТОВ И БАТАРЕЙ И. АЛИМОВ Амурская обл.
Идея восстановления разряженных гальванических элементов подобно аккумуляторным батареям не нова. Восстанавливают элементы с помощью специальных зарядных устройств. Практически установлено, что лучше других поддаются регенерации наиболее распространенные стаканчиковые марганцево-цинковые элементы и батареи, такие, как 3336Л (КБС-Л-0,5), 3336Х (КБС-Х-0,7), 373, 336. Хуже восстанавливаются галетные марганцево-цинковые батареи "Крона ВЦ", БАСГ и другие.
Наилучший способ регенерации химических источников питания - пропускание через них асимметричного переменного тока, имеющего положительную постоянную составляющую. Простейшим источником асимметричного тока является однополупериодный выпрямитель на диоде, шунтированном резистором. Выпрямитель подключают к вторичной низковольтной (5-10 в) обмотке понижающего трансформатора, питающегося от сети переменного тока. Однако такое зарядное устройство имеет невысокий к. п. д.- приблизительно 10% и, кроме этого, заряжаемая батарея при Случайном отключении напряжения, питающего трансформатор, может разряжаться.
Лучших результатов можно добиться, если применять зарядное устройство, выполненное по схеме, представленной на рис.
1. В этом устройстве вторичная обмотка II питает два отдельных выпрямителя на диодах Д1 и Д2, к выходам которых подключены две заряжаемые батареи Б1 и Б2.


рис. 1
Параллельно диодам Д1 и Д2 включены конденсаторы C1 и С2. На рис. 2 показана осциллограмма тока, проходящего через батарею. Заштрихованная часть периода - это час, в течение которого через батарею протекают импульсы разрядного тока.


ЧТОБЫ УВЕЛИЧИТЬ (УМЕНЬШИТЬ) СХЕМУ, НАЖМИТЕ НА КАРТИНКУ


рис. 2
Эти импульсы, очевидно, особым образом влияют на ход электрохимических процессов в активных материалах гальванических элементов. Процессы, происходящие при этом, ещё недостаточно изучены и описания их нет в популярной литературе. При отсутствии импульсов разрядного тока (что бывает при отсоединении конденсатора, включенного параллельно диоду) регенерация элементов практически прекращалась.
Опытным путем установлено, что марганцево-цинковые гальванические элементы сравнительно мало критичны к величине постоянной составляющей и форме отрицательных импульсов зарядного тока. Это позволяет использовать зарядное устройство без дополнительной регулировки постоянной и переменной составляющих зарядного тока для восстановления, различных элементов и батарей. Отношение постоянной составляющей тока заряда к эффективному значению его переменной составляющей должно быть в пределах 5-25.
Производительность зарядного устройства можно повысить, включая для заряда по несколько элементов последовательно. При этом надобно учесть, что в процессе заряда э. д. с. элементов может возрастать до 2-2,1.в. Исходя из этого и зная напряжение на вторичной обмотке трансформатора, определяют число одновременно заряжаемых элементов.
Подключать к зарядному устройству батареи типа 3336Л удобнее через лампочку накаливания 2,5в Х 0,2а, играющую роль бареттера и одновременно служащую индикатором степени заряда. По мере восстановления электрического заряда батареи свечение лампочки уменьшается. Элементы типа "Марс" (373) надобно подключать без лампочки, так как постоянная составляющая зарядного тока такого элемента должна быть 200-400 ма. Элементы 336 подключают группами по три штуки,включенных последовательно. Условия заряда такие же, как и для батарей типа 3336. Зарядный ток для элементов 312, 316 должен быть 30-60 ма. Возможен одновременный заряд больших групп батарей 3336Л (3336Х) непосредственно от сети (без трансформатора) через два включенных последовательно диода Д226Б, параллельно которым включен конденсатор 0,5 мкф с рабочим напряжением 600 в.
Зарядное устройство может быть выполнено на базе трансформатора электробритвы "Молодость", пмеющего две вторичные обмотки с напряжением 7,5 в. Удобно использовать также накальное напряжение 6,3 в любого сетевого лампового радиоприемника. Естественно, то или иное решение выбирают в зависимости от требуемого максимального зарядного тока, определяемого типом восстанавливаемых элементов. Из этого же исходят, выбирая выпрямительные диоды.


ЧТОБЫ УВЕЛИЧИТЬ (УМЕНЬШИТЬ) СХЕМУ, НАЖМИТЕ НА КАРТИНКУ


рис. 3
Для того, чтобы оценить эффективность данного метода восстановления гальванических элементов и батарей, на рис. 3 представлены графики разрядного напряжения для двух батарей 3336Л при сопротивлении нагрузки Rн=10 ом. Сплошными линиями показаны кривые разряда новых батареи,а пунктирными - после двадцати полных циклов разряд - заряд. Таким образом, работоспособность батарей после двадцатиразового использования ещё совершенно удовлетворительна.
Сколько же циклов разряд-заряд могут выдерживать гальванические элементы и батареи? Очевидно, это сильно зависит от условий эксплуатации, сроков хранения и других факторов. На рис. 4 показано изменение, времени разряда на нагрузку Rн=10 ом двух батарей 3336Л (кривые 1 и 2) в течение 21 цикла разряд-заряд. Батареи разряжались до напряжения не ниже 2,1 в, режим заряда обеих батарей - одинаков. В течение указанного времени эксплуатации батарей час разряда уменьшилось со 120-130 мин до 50-80 мин, то есть почти вдвое.


ЧТОБЫ УВЕЛИЧИТЬ (УМЕНЬШИТЬ) СХЕМУ, НАЖМИТЕ НА КАРТИНКУ


рис. 4
Такое же уменьшение емкости допускается техническими условиями в конце установленного максимального срока хранения. Практически удается восстанавливать элементы и батареи до тех пор, пока у них не будут полностью разрушены цинковые стаканчики или не высохнет электролит. Установлено, что больше циклов выдерживают элементы, интенсивно разряжающиеся на мощную нагруэку (например, в фонариках, в блоках питания электробритв). Не следует разряжать элементы и батареи до напряжения ниже 0,7 в на ингредиент. Восстанавливаемость элементов 373 относительно хуже, так как после 3-6 циклов их емкость резко уменьшается.
О необходимой продолжительности заряда можно сделать, вывод, пользуясь графиком; представленным на рис.
4. При увеличении времени заряда более 5 часов восстановленная емкость батарей увеличивается в среднем весьма незначительно. Поэтому можно считать, что при указанных величинах зарядного тока минимальное час восстановления составляет 4-6 часов, причем явных признаков конца заряда мар-ганцево-цинковые элементы не имеют и к перезаряду нечувствительны.
Применение асимметричного тока оказывается полезным также для зарядки и формовки аккумуляторов и аккумуляторных батарей. Этот вопрос, однако, ещё требует проверки на практике и может открыть новые интересные возможности аккумуляторов.
(Радио 6-72, с.55-56)

Как зарядить аккумуляторы для электронных устройств в походных условиях?

К сожалению, практически все устройства, называемые мобильными, на самом деле сильно зависят от розетки. Особенно это актуально при многодневных туристических походах, когда уже через пару-тройку дней полезные гаджеты (телефоны, рации, навигаторы, плееры и пр.) постепенно превращаются в нерабочий бесполезный хлам.

Хорошо если туристы позаботились о специальном снаряжении: дополнительные аккумуляторы, походные солнечные батареи, генераторы и т.п. А если нет? Между тем, существует довольно простой способ получить электрический ток достаточный для работы простейших электронных устройств прямо на месте и без больших затрат.

Принцип работы данного источника тока основан на том, что некоторые металлы образуют между собой т.н. гальванические пары. Если два электрода из таких металлов поместить в электролит, они начнут вырабатывать электрический ток.

При устройстве такого простейшего элемента можно использовать в качестве электродов любые медные (латунные, свинцовые) и железные (цинковые, алюминиевые) отрезки проволоки, а лучше — пластины. Больше площадь взаимодействия — больше ток. А в качестве электролита подойдет сырая земля (грунт), которую лучше пропитать солевым раствором. Грубо говоря, ток может вырабатывать и лопата, воткнутая в грядку, но лучше систему электродов поместить в отдельную герметичную емкость, куда и насыпается грунт.

Разумеется, напряжение такого элемента невелико — 0,5-1 вольт. А ток, который он вырабатывает 20-50 мА. Но что нам мешает сделать несколько таких элементов и соединить их последовательно! Таким образом, мы достигнем необходимого напряжения, достаточного для зарядки аккумулятора мобильного телефона или другого устройства.

Кроме того, для достижения требуемого напряжения можно поэкспериментировать с размером (площадью поверхности) электродов, материалом (металлом) из которого они сделаны, концентрацией соляного раствора и заменой поваренной соли на, скажем, медный купорос и т.д.

Разумеется, такой элемент имеет невысокий КПД. Но! Во-первых, он крайне дешев и делается из материалов, которые валяются под ногами — (проволока, обрезки труб, пластины металла). Во-вторых, он не требует обслуживания после его изготовления. Один раз сделал и пользуйся весь сезон. Ну, разве что необходимо поддерживать влажность грунта. В третьих – он очень прост в изготовлении и может быть воспроизведен за несколько минут на каждой новой стоянке, что немаловажно для туристов. Разбили стоянку, воткнули электроды в землю, полили соленой водой и извольте заряжаться. За ночь аккумуляторы фонариков, мобильных телефонов, раций, фотоаппаратов и навигаторов получат необходимую подпитку.

Такими элементами пользовались еще на заре электроники, когда батареи были очень дефицитны и дороги. Теперь же с появлением весьма экономичных и низковольтных электронных приборов массового пользования они возможно кому то снова смогут принести пользу.

Автор статьи: Неизвестен


Проблема повторного использования гальванических элементов питания давно волнует любителей электроники. В технической литературе неоднократно публиковались различные методы "оживления" элементов, но, как правило, они помогали только один раз, да и ожидаемой емкости не давали.

В результате экспериментов удалось определить оптимальные токовые режимы регенерации и разработать зарядные устройства, пригодные для большинства элементов. При этом они обретали первоначальную емкость, а иногда и несколько превосходящую ее.

Восстанавливать нужно элементы, а не батареи из них, поскольку даже один из последовательно соединенных элементов батареи, пришедший в негодность (разряженный ниже допустимого уровня) делает невозможным восстановление батареи.

Что касается процесса зарядки, то она должна проводиться асимметричным током с напряжением 2,4...2,45 В . При меньшем напряжении регенерация весьма затягивается и элементы после 8...10 часов не набирают и половинной емкости. При большем же напряжении нередки случаи вскипания элементов, и они приходят в негодность.

Перед началом зарядки элемента необходимо провести его диагностику, смысл которой состоит в определении способности элемента выдерживать определенную нагрузку. Для этого к элементу подключают вначале вольтметр и измеряют остаточное напряжение, которое не должно быть ниже 1 В . (Элемент с меньшим напряжением непригоден к регенерации.) Затем нагружают элемент на 1...2 секунды резистором 10 Ом , и, если напряжение элемента упадет не более чем на 0,2 В , он пригоден к регенерации.

Электрическая схема зарядного устройства, приведенная на рис. 1 (предложил Б. И. Богомолов), рассчитана на зарядку одновременно шести элементов (G1...G6 типа 373, 316, 332, 343 и других аналогичных им).

Рис. 1

Самой ответственной деталью схемы является трансформатор Т1 , так как напряжение во вторичной обмотке у него должно быть строго в пределах 2,4...2,45 В независимо от количества подключенных к нему в качестве нагрузки регенерируемых элементов.

Если готового трансформатора с таким выходным напряжением найти не удастся, то можно приспособить уже имеющийся трансформатор мощностью не менее 3 Вт , намотав на нем дополнительно вторичную обмотку на нужное напряжение проводом марки ПЭЛ или ПЭВ диаметром 0,8.,.1,2 мм . Соединительные провода между трансформатором и зарядными цепями должны быть возможно большего сечения.

Продолжительность регенерации ^ 4...5 , а иногда и 8 часов . Периодически тот или иной элемент надо вынимать из блока и проверять его по методике, приведенной выше для диагностики элементов, а можно следить с помощью вольтметра за напряжением на заряжаемых элементах и, как только оно достигнет 1,8...1,9 В , регенерацию прекратить, иначе элемент может перезарядиться и выйти из строя. Аналогично поступают в случае нагрева какого-либо элемента.

Лучше всего восстанавливаются элементы, работающие в детских игрушках, если ставить их на регенерацию сразу же после разряда. Причем такие элементы, особенно с цинковыми стаканами, допускают многоразовую регенерацию. Несколько хуже ведут себя современные элементы в металлическом корпусе.

В любом случае, главное для регенерации не допускать глубокого разряда элемента и вовремя ставить его на подзарядку, так что не спешите выбрасывать отработанные гальванические элементы.

Вторая схема (рис. 2 ) использует тот же принцип подзарядки элементов пульсирующим ассимметричным электрическим током. Она предложена С. Глазовым и проще в изготовлении, так как позволяет использовать любой трансформатор с обмоткой, имеющей напряжение 6,3 В . Лампа накаливания HL1 (6,3 В; 0,22 А) выполняет не только сигнальные функции, но и ограничивает зарядный ток элемента, а также предохраняет трансформатор в случае коротких замыканий в цепи зарядки.

^ Рис. 2

Стабилитрон VD1 типа КС119А ограничивает напряжение заряда элемента. Он может быть заменен набором из последовательно включенных диодов - двух кремниевых и одного германиевого - с допустимым током не менее 100 мА . Диоды VD2 и VD3 - любые кремниевые с тем же допустимым средним током, например КД102А, КД212А .

Емкость конденсатора С1 - от 3 до 5 мкФ на рабочее напряжение не менее 16В . Цепь из переключателя SA1 и контрольных гнезд Х1, Х2 для подключения вольтметра. Резистор R1 - 10 Ом и кнопка SB1 служат для диагностики элемента G1 и контроля его состояния до и после регенерации.

Нормальному состоянию соответствует напряжение не менее ^ 1,4 В и его уменьшение при подключении нагрузки не более чем на 0,2 В .

О степени заряженности элемента можно также судить по яркости свечения лампы HL1 . До подключения элемента она светится примерно в полнакала. При подключении разряженного элемента яркость свечения заметно увеличивается, а в конце цикла зарядки подключение и отключение элемента почти не вызывает изменения яркости.

При подзарядке элементов типа СЦ-30, СЦ-21 и других (для наручных часов) необходимо последовательно с элементом включать резистор на 300...500 Ом . Элементы батареи типа 336 и других заряжаются поочередно. Для доступа к каждому из них нужно вскрыть картонное донышко батареи.

^ Рис. 3

Если требуется восстановить заряд только у элементов питания серии СЦ , схему для регенерации можно упростить, исключив трансформатор (рис. 3 ).

Работает схема аналогично вышеприведенным. Зарядный ток (I зар ) элемента G1 протекает через элементы VD1, R1 в момент положительной полуволны сетевого напряжения. Величина I зар зависит от величины R1 . В момент отрицательной полуволны диод VD1 закрыт и разряд идет по цепи VD2 , R2 . Соотношение I зар и I разр выбрано 10:1 . У каждого типа элемента серии СЦ своя емкость, но известно, что величина зарядного тока должна составлять примерно десятую часть от электрической емкости элемента питания. Например, для СЦ-21 - емкость 38 мА-ч (Iзар=3,8 мА, Iразр=0,38 мА) , для СЦ-59 - емкость 30 мА-ч (Iзар=3 мА, Iразр=0,3 мА) . На схеме указаны номиналы резисторов для регенерации элементов СЦ-59 и СЦ-21 , а для других типов их легко определить, воспользовавшись соотношениями: R1=220/2·lзap, R2=0,1·R1 .

Установленный в схеме стабилитрон VD3 в работе зарядного устройства участия не принимает, но выполняет функцию защитного устройства от поражения электрическим током - при отключенном элементе G1 на контактах Х2, ХЗ напряжение не сможет возрасти больше, чем уровень стабилизации. Стабилитрон КС175 подойдет с любой последней буквой в обозначении или же может быть заменен двумя стабилитронами типа Д814А , включенными последовательно навстречу друг другу ("плюс" к "плюсу"). В качестве диодов VD1, VD2 подойдут любые с рабочим обратным напряжением не менее 400 В .

^ Рис. 4

Время регенерации элементов составляет 6...10 часов . Сразу после регенерации напряжение на элементе будет немного превышать паспортную величину, но через несколько часов установится номинальное - 1,5 В .

Восстанавливать таким образом элементы СЦ удается три-четыре раза, если их ставить вовремя на подзарядку, не допуская полного разряда (ниже 1В ).

Аналогичный принцип работы имеет схема, показанная на рис. 4 . Она в особых пояснениях не нуждается.

^ Иванов Б.С. "В помощь радиокружку"

С амая разнообразная бытовая аппаратура (радиоприемники, магнитофоны, электропроигрывающие устройства), измерительные приборы, электронные часы и многие другие конструкции питаются от гальванических элементов и батарей. Проходит время, и источник питания приходится заменять, выбрасывая порою еще пригодные к работе элементы и батареи. Пригодные потому, что их, подобно автомобильной аккумуляторной батарее, можно подзарядить и пустить в работу вновь.

П роцесс восстановления работоспособности гальванического источника питания называют регенерацией, впервые о нем заговорили более трех десятилетий назад. Практика показала, что не каждый элемент (или батарея) пригоден для регенерации, а лишь тот, у которого напряжение, а значит и емкость, не опустились ниже определенной отметки. К примеру, для батареи 3336 таким пределом можно считать напряжение 2,4 В. Гальванический же элемент подлежит регенерации в случае, если его ЭДС не более чем на 0,2 В выше напряжения под нагрузкой. Причем ток нагрузки во время проверки должен быть равен примерно 5...10% значения номинальной емкости элемента.

С хема простейшего прибора для проверки способности элемента (или батареи) к регенерации приведена на рис. 109. Вольтметром PV1 измеряют ЭДС и напряжение испытываемого источника (его подключают к зажимам ХТ1 и ХТ2 в указанной на схеме полярности), а кнопочными выключателями SB1 и SB2 задают тот или иной режим разрядки (сопротивления нагрузки).

К ак свидетельствуют эксперименты, наиболее успешно поддаются восстановлению элементы (батареи), эксплуатирующиеся при больших токах нагрузки (детские игрушки, карманные фонари, переносные магнитофоны и т. д.), хуже - источники, работающие при малых токах (портативные радиоприемники, электромеханические часы-будильники).

Р ассказ о восстановлении гальванических элементов (батарей) следует начать, пожалуй, с того случая, когда подобный источник питания долго хранился и высох. Тогда нужно проделать шилом или тонким гвоздем два отверстия в верхней картонной крышке и битумной заливке элемента и впрыснуть в одно из отверстий с помощью медицинского шприца немного воды (лучше дистиллированной). При этом через второе отверстие будет выходить вытесняемый воздух. Кроме того, это отверстие станет контрольным - как только в нем покажется вода, шприц вынимают.

П осле "укола" отверстие заплавляют горячим паяльником или пламенем зажженной спички. Через некоторое время, а иногда и сразу, элемент готов к работе.

^ А налогично поступают с батареей, делая "укол" в каждый ее элемент.

Е сли же элемент (батарея) потерял первоначальную емкость во время эксплуатации, его подключают к зарядному устройству. А чтобы элемент зарядился, нужно пропустить через него вполне определенный зарядный ток и продержать элемент в таком состоянии положенное время. Обычно для аккумуляторов зарядный ток берется равным десятой части его емкости. Такое же соотношение можно принять и для гальванических источников питания. Поэтому зарядные устройства несколько отличаются друг от друга по схемотехническим решениям: ведь каждое из них обеспечивает зарядный ток для "своей" батареи.

У стройство, схема которого приведена на рис. 110, заряжает элементы 332 и 316 и даже малогабаритные аккумуляторы Д-0,2. Оно обеспечивает зарядный ток около 20 мА. Основная часть устройства - выпрямитель, собранный на диодах VD1 и VD2. Выпрямленное напряжение сглаживается фильтром C1R2C2 и подается на зажимы ХТ1 и ХТ2, к которым подключают заряжаемый источник питания. Стабилитрон VD3 предохраняет от пробоя конденсаторы при случайном отключении нагрузки, резистор R1 ограничивает зарядный ток.

Р езистор R1 лучше всего применить марки ПЭВ (остеклованный, проволочный), но его можно составить и из четырех последовательно соединенных МЛТ-2 сопротивлением по 2 кОм (один из резисторов - 2,2 кОм). Диоды могут быть любые другие, рассчитанные на обратное напряжение не ниже 300 В и выпрямленный ток более 50 мА, а стабилитрон (кроме указанного на схеме) - Д809, Д814А, Д814Б. Конденсаторы - К50-6 или другие. Зажимы - любой конструкции. При отсутствии гасящего резистора R1 большой мощности или резисторов МЛТ-2 вместо него подойдет обыкновенный бумажный конденсатор емкостью 0,2...0,25 мкФ на номинальное напряжение не ниже 400 В.

Д ля зарядки элементов 373, 343 и батарей 3336 предназначено другое устройство (рис. 111), в котором гасящий резистор (он должен быть значительно большей мощности по сравнению с таким же резистором предыдущего устройства) заменен бумажным конденсатором С1. Параллельно конденсатору включен шунтирующий резистор R1, позволяющий конденсатору разряжаться после выключения устройства. Последующие цепи из диодов, конденсаторов и резисторов имеют такое же назначение, что и в предыдущем устройстве.

Н е удивляйтесь, что к этому зарядному устройству предлагается подключать источники с разным напряжением - 1,5 и 4,5 В. Зарядный ток у них разный, поэтому при подключении, скажем, элемента 373 из-за возрастания тока через него напряжение на выводах элемента упадет до указанного.

Д о сих пор мы говорили о зарядке гальванических элементов и батарей строго постоянным током, т. е. выпрямленным током, "очищенным" от пульсации переменного напряжения. Несколько лучшие результаты получаются при зарядке этих источников питания так называемым асимметричным переменным током, имеющим положительную постоянную составляющую. Простейшим источником такого тока является однополупериодный выпрямитель на диоде, шунтированном постоянным резистором, и без фильтрующих конденсаторов. Выпрямитель подключают к вторичной обмотке понижающего трансформатора с напряжением 5...10В.

Т огда при одном полупериоде сетевого напряжения ток будет протекать через диод и заряжаемый элемент (или батарею), а при другом - через резистор и ту же нагрузку. Изменением сопротивления резистора можно подбирать соотношение (асимметрию) между постоянной составляющей тока зарядки и эффективным значением его переменной составляющей в пределах 5...25 (практически это соотношение поддерживают в пределах 13...17).

В ариант с шунтирующим резистором обладает, к сожалению низким КПД и еще одним недостатком - при случайном отключении сетевого напряжения (или нарушении контакта сетевой вилки) источник питания будет разряжаться через резистор и вторичную обмотку трансформатора.

Б олее оптимален вариант с шунтирующим конденсатором (рис. 112). Его емкость такова, что на частоте 50 Гц емкостное сопротивление конденсатора получается равным примерно 320 Ом - оно и определяет асимметрию. Кроме того, в зарядную цель включена лампа HL1, выполняющая как роль стабилизатора зарядного тока, так и индикатора степени заряженности нагрузки - по мере зарядки источника G1 яркость лампы падает.

П онижающий трансформатор Т1 выполнен с отводами во вторичной обмотке. Это нужно для подбора напряжения, подаваемого на выпрямитель в зависимости от зарядного тока нагрузки.

П ри подключении к выпрямителю выводов 3-6 вторичной обмотки устройство готово к зарядке - регенерации батарей 3336 либо элементов 373, требующих постоянной составляющей зарядного тока 200... 400 мА. Если же подать на выпрямитель напряжение с выводов 4-6, к зарядному устройству можно подключать элементы 343, 332, 316. Если ток зарядки элементов 373 или 343 окажется чрезмерным, его нетрудно уменьшить подключением к выпрямителю выводов 3-5. Одним словом, комбинацией подключения к выпрямителю тех или иных выводов вторичной обмотки можно подбирать нужный зарядный ток.

Е сли же в вашем распоряжении окажутся лишь трансформаторы без отводов во вторичной обмотке, следует руководствоваться тем, что подводимое к выпрямителю (иначе говоря, снимаемое с вторичной обмотки трансформатора) эффективное значение напряжения должно быть 2,3...2,4 В на один регенерируемый элемент. Поэтому при регенерации, например, батареи 3336, это напряжение должно составить 6,9...7,2 В.

Р егенерацию желательно проводить раздельно для каждого гальванического элемента, однако в некоторых случаях можно включать последовательно два-три элемента и подключать получившуюся батарею к зарядному устройству. Но такой вариант возможен лишь при одинаковой или близкой степени разряженности всех элементов. В противном случае самый "худший" (наиболее разряженный) элемент ограничивает ток, что скажется на времени и качестве регенерации.

В ыпрямительный диод может быть любой низковольтный, допускающий ток до 300 мА, оксидный конденсатор - К50-6, лампа - на напряжение 3,5 или 6,3 В (МН 3,5-0,14, МН 6,3-0,3). Трансформатор - самодельный, изготовленный на базе унифицированного выходного трансформатора звука ТВЗ-1-1. Его первичная обмотка остается, а вторичная дорабатывается - у нее делают отводы. Для этого от вторичной обмотки отматывают (но не обрывают) 30 витков, делают отвод (вывод 4), наматывают 26 витков и вновь делают отвод (вывод 5), наматывают оставшиеся 4 витка и подпаивают к концу провода вывод (6).

Т рансформатор может быть изготовлен самостоятельно на магнитопроводе Ш16Х24 или аналогичном по сечению. Сетевая обмотка (выводы 1-2) должна содержать 2400 витков провода ПЭВ-2 0,15, вторичная - 70 (выводы 3-4), 26 (выводы 4-5) и 4 (выводы 5-6) витка провода ПЭВ-2 0,57.

В о время регенерации периодически проверяют ЭДС элемента. Как только она возрастет до 1,7...2,1 В и в течение последующей часовой зарядки будет оставаться стабильной, регенерацию заканчивают.

О б эффективности регенерации асимметричным током можно судить, проверяя энергетические параметры элемента или батареи: ЭДС и напряжение, продолжительность разрядки до определенного напряжения (при одинаковом сопротивлении нагрузки) до и после зарядки.
^ 5.5 Зарядное устройство для гальванических элементов

Рассмотрим возможность многократного использования гальванических элементов и батарей. Как известно, наибольший эффект дает зарядка асимметричным током при соотношении зарядного и разрядного токов 10: 1.

Схема зарядного устройства представлена на рис. 115. Генератор импульсов с регулируемой скважностью выполнен на логических элементах DD1.1-DD1.3. Частота следования импульсов около 100 Гц. На транзисторах VT1 и VT2 собран ключ, усиливающий импульсы генератора по току. Если на выходе логического элемента DD1.3 напряжение низкого уровня, транзисторы VT1, VT2 открыты, и через батарею, подключенную к гнездам XS1, протекает зарядный ток. При напряжении высокого уровня на выходе элемента DD1.3 оба транзистора закрыты и батарея GB1 разряжается через резистор R7. Переменным резистором R1 изменяют в небольших пределах соотношение длительностей открытого и закрытого состояний транзистора VT2, т. е. скважность импульсов асимметричного тока.

Микросхему К561ЛН2 можно заменить на К561ЛА7, К176ЛА7; транзистор VT1 - любой из серий КТ203, КТ361, КТ501, VT2 - любой из серий КТ815, КТ817, КТ3117, КТ608. Диоды VD1,VD2 - Д311, КД503, КД509, Д223 с любыми буквами.

Налаживание устройства состоит в подборке резисторов R6 и R7 по требуемым значениям зарядного и разрядного токов. Напряжение питания выбирают в пределах б... 15 В в соответствии с общим напряжением заряжаемых элементов. Зарядный ток выбирают исходя из (6...10)-часового режима заряда. Скважность импульсов


Схема предназначеня для установки в промышленное зарядное устройство для аккумуляторов 7Д-0,115 (так у меня на нем написано) или "Ника". Не стоит применять его для восстановления батареек "Крона", т.к.

последние могут "потечь" и вывести из строя само устройство или привести к пожару.


Схема зарядного устройства приведена на рисунке. Зарядное устройство автоматически отключает аккумулятор по окончании заряда и включает его при разрядке аккумулятора ниже порогового значения (при данных номиналах резисторов это 10,5 В и 8,4 В соответственно). Светодиод LED1 сигнализирует о процессе заряда. Резистор R2 устанавливает порог отключения заряда, а R3 - гистерезис (при указанных номиналах 2,1В). Транзистор VT1 служит одновременно и генератором стабильного тока (10мА) и ключем. Кстати, если на выход устройства повесить конденсатор от 100мкФ и выше - получится автогенератор, который будет работать при отключенном аккумуляторе или отсутствии контакта.

Настройку следует начинать при отключенном аккумуляторе. Движок резистора R3 устанавливают в среднее значение и проверяют напряжение питания - оно не должно превышать 15В. Если напряжение больше - необходимо подобрать стабилитрон VD1 на меньшее напряжение. Если вы использовали новые детали - их необходимо "обкатать". Для этого берут конденсатор как можно большей емкости (я использовал 150.000mkF), параллельно ему включают сопротивление 3-10 кОм и подключают вместо аккумулятора, соблюдая полярность. Получается иммитация аккумулятора очень маленькой емкости. Светодиод начинает периодически загораться и тухнуть. В таком виде желательно оставить схему на 1-2 часа. После окончания "обкатки" сопротивление, включенное параллельно конденсатору, удаляют и подключают на его место вольтметр (лучше цифровой). Подстроечным резистором R2 устанавливают порог выключения светодиода 10,5 В. Если вы хотите, чтобы по окончании заряда емкость аккумулятора поддерживалать около 100% необходимо уменьшить номинал резистора R3 до 33 кОм.

Детали: конденсатор С1 на напряжение не менее 250 В, лучше 400 В; стабилитрон на напрядение 12-15 В; микросхему К561ЛН2 можно заменить на 561ЛЕ5, 561ЛА7, соответственно изменив схему включения; конденсатор С2 на напряжение 16В (при уменьшении его емкости до 470 мкФ желательно последовательно с C1 включить сопротивление на 100-200 Ом для ограничения броска тока в момент включения устройства в сеть); транзистор КП303 с начальним током стока 10мА (буквы: Г, Д, Е) можно использовать любой с аналогичными параметрами; светодиод - любой из серии АЛ307; резисторы 0,125 Вт.

В микросхеме 3 инвертора остаются неиспользуемыми. Это дает возможность собрать на них второй канал и установить все это в "китайское" зарядное устройство. Можно также использовать их для звуковой или световой индикации режимов работы.

Можно дополнить схему для "тренировки" и восстановления старых аккумуляторов рис.2. В этом случае резистор R3 (рис.1) необходимо заменить на подстроечный с номиналом не менее 200 кОм, для установки нижнего предела напряжения срабатывания схемы (7В). Здесь с помощью S1 выбирают режим работы заряд/тренировка (на схеме показан в режиме заряд). Этот режим особенно полезен для NiCd аккумуляторов как находящихся длительное время в эксплуатации, так и абсолитно новых (3-4 цикла тренировки позволяют им выйти на режим полной емкости). Для примера приведу опробирование этого режима с аккумулятором 7Д-0,125Д (год выпуска - 1991, год ввода в эксплуатацию - 1992, установлен в мультиметре "МР-12" с током потребления 1-2мА).

О низкой эффективности заряда уже говорилось ранее. Однако если в силу тех или иных обстоятельств такой заряд желателен, то его надо проводить импульсами разнополярного тока. Вслед за импульсом тока заряда должен следовать меньший по амплитуде импульс разрядного тока противоположной полярности. Такой режим легко создать с помощью зарядного устройства, схема которого представлена на рисунке.

Асимметрия импульсов тока заряда/разряда достигается за счет различия номиналов резисторов, включенных последовательно с диодами, имеющими встречное включение. Разумеется, в зависимости от типа заряжаемых элементов (батарей) может варьироваться величина напряжения на вторичной обмотке трансформатора и номиналы резисторов. В среднем зарядный ток должен быть заметно меньше, чем ток разряда при эксплуатации элементов. Время заряда должно составлять не менее 15-20 часов, причем заряд должен обеспечивать энергию на 50 % большую, чем энергия разряда.

Ни в коем случае нельзя заряжать гальванические элементы, срок хранения которых истек. Это чревато ускоренным нарушением герметичности корпуса и вытеканием едкого электролита. Вообще сторонникам заряда гальванических элементов стоит прислушаться к печально известной поговорке - скупой платит дважды! Притом во второй раз куда больше, чем в первый, ибо, скорее всего, ему придется покупать заново уже не комплект элементов, а новый КПК взамен загубленного.

Дополнительные материалы:

  • Портативное зарядное устройство является одним из лучших аксессуаров для мобильного телефона, на который вы можете потратить свои деньги. В этом руководстве, мы поможем вам выбрать Power Bank, который станет идеальным…
  • Многие привыкли называть iPhone культовым телефоном, которому все нипочем. Идеальный экран, идеальный дизайн, идеальный корпус - этот гаджет разве что будущее не предсказывает.Однако ремонт Айфона все же порой требуется, что…
  • Если у вас есть несколько устройств, таких как смартфон и планшет, может быть достаточно трудно отслеживать определенные аспекты их работы. Например уровень заряда аккумуляторов. Существуют методы, позволяющие привязать ваш Android…
  • Повербанки становятся популярными, поскольку наши гаджеты становятся более умными и универсальными инструментами в повседневной жизни. Созданные специально для различных типов коммуникаций, таких как звонки, СМС, электронные письма и другие задачи,…
  • Вы потратили приличную сумму денег на смарт-часы, а затем столкнулись с проблемой быстрого разряда батареи на устройстве? Это проблема, с которой сталкиваются многие из нас с этими гаджетами. Мы все…

В.Васильев

Карманные аудиоплейеры, радиоприемники, проигрыватели компакт-дисков и другая портативная радиоэлектронная аппаратура массового потребления питается от гальванических или аккумуляторных элементов различных типоразмеров. Во всем мире более 500 различных фирм и дочерних предприятий занимаются их изготовлением, получая постоянную прибыль, так как потребность в этих необходимых всем источниках тока возрастает с каждым годом.

Гальванические элементы относительно недороги, имеют начальное напряжение 1,5 В и емкость от 0,6 до 8,0 А.ч. Их недостатком можно считать резкое падение напряжения по мере разрядки (до 0,7 В), тогда как большинство аппаратов допускает их разрядку только до 1,0...1,1 В. Другой недостаток - самый существенный - одноразовое использование. После израсходования примерно 70% энергии гальванические элементы требуют замены на новые. В литературе описаны разного рода зарядные устройства, которые могут продлить срок службы гальванических элементов, но при этом число циклов подзарядки исчисляется единицами, а емкость элемента снижается практически до нуля. Кроме того, на некоторых типах элементов делается надпись "Подзарядка запрещена". Это сделано с целью предупредить несчастный случай в результате разрушения оболочки элемента при зарядке.

В этом отношении аккумуляторные элементы имеют ряд существенных преимуществ. Главное - возможность многократной зарядки их на протяжении 5...10 лет. Отечественные аккумуляторные элементы имеют гарантированный срок службы не менее 500 циклов зарядки/разрядки, а зарубежные - не менее 1000. Хотя на практике может быть иначе. Например, автор статьи эксплуатирует пару аккумуляторных элементов емкостью 0,45 А.ч, перезаряжая их дважды в неделю (100 циклов в год). Они были приобретены еще в 1993 году, выдержали 700 циклов зарядки/разрядки и продолжают служить.

Другим преимуществом аккумуляторных элементов является высокая стабильность их рабочего напряжения. Свежезаряженный элемент имеет начальное напряжение 1,3...1,4 В, которое снижается по мере разрядки до 1,1 В. Практически полная разрядка элемента достигается при снижении напряжения до 1 В. Дальнейшая разрядка элемента ниже этого порогового значения снижает продолжительность работы аккумулятора и его емкость. В том случае, когда в аппаратуре используется только один элемент, например, в микроприемнике, достижение порогового значения напряжения разрядки заметно по факту прекращения работы приемника. Тогда элемент изымается и ставится на зарядку. В тех случаях, когда используется батарея из двух, четырех, либо шести элементов, может оказаться, что из-за неодинаковой емкости элементов один из них (самый слабый) раньше других понизит свое напряжение до порога и начнет разряжаться далее за счет нормальной работы других элементов. При этом громкость звучания может несколько снизиться, но сам приемник или плейер продолжит свою работу до разрядки других элементов.

Практика показывает, что самый слабый элемент будет иметь напряжение около 0,3 В обратной полярности (там, где раньше был "минус", стал "плюс"). Иными словами, произошла перезарядка элемента, что пагубно скажется на его дальнейшей работе. Исправить это положение можно путем немедленной зарядки его нормальным током в течение требуемого времени.

Аккумуляторные элементы при всей простоте своего внешнего вида обладают "злопамятливым" характером. Это заключается в том, что накопление энергии в полном объеме возможно только при зарядке током определенной величины (десятичасовому разрядному току) в течение 15...16 часов. Кроме того, напряжение разряженного элемента должно быть равно 1,0...1,1 В. О нежелательности разрядки ниже этого порога говорилось выше. Не рекомендуется также, чтобы это напряжение было больше порога, например, 1,2 В, т.е. когда накопленная ранее энергия израсходована не полностью, например, только на 50%. Если такое случится, то при последующем цикле зарядки аккумулятор накопит и отдаст в нагрузку те же 50%, не более. Поэтому для обеспечения длительной эксплуатации аккумуляторных элементов и получения от них номинального запаса энергии, необходимо перед включением их на подзарядку измерить вольтметром напряжение на них. Если оно находится в пределах 1,0.1,1 В, то их можно сразу ставить на зарядку. Если напряжение более этого значения, то требуется предварительно разрядить их. К сожалению, если зарядные устройства продаются везде и повсюду, то специальных устройств для контроля конечного напряжения элемента и разрядки его перед включением нет как в нашей стране, так и за рубежом. Существует мнение, что применение таких устройств осложняет эксплуатацию аппаратуры, особенно теми людьми, которые далеки от техники. В этом отношении специалисты и народные умельцы имеют преимущества.

Так, если использовать аккумуляторные элементы, не контролируя их состояние перед включением на зарядку, то срок службы снижается примерно вдвое. В этом случае отечественные аккумуляторы выходят из строя через 200...300 циклов зарядки/разрядки, а зарубежные - через 400...600. Для большинства потребителей это не будет особенно заметно, так как все равно речь идет о нескольких годах эксплуатации. Но если, прежде чем аккумуляторные элементы будут включены на зарядку, каждый из них пройдет проверку и дополнительно разрядится до требуемого уровня, то срок службы их увеличится по сравнению с гарантийным до 1000...1200 циклов зарядки/разрядки для отечественных и 1500...2000 циклов для зарубежных элементов. Правда, такие предварительные операции кому-то могут показаться сложными, но для тех, кто вынужден постоянно работать с портативной аппаратурой, они не являются помехой.

На отечественном рынке радиотоваров сейчас изобилие аккумуляторных элементов отечественного и зарубежного производства, и не только типоразмера 316. Имеются в продаже элементы других популярных типоразмеров -286, 343, 373.

Проще всего разбираться с отечественными элементами, имеющими стандартное обозначение - НКГЦ - означающее "Никель-Кадмиевый Герметичный Цилиндрический" аккумулятор. После этих букв идут цифры, указывающие номинальную емкость в ампер-часах. Например, самые распространенные и недорогие элементы типоразмера 316 имеют обозначение НКГЦ - 0,45. Это значит, что каждый элемент имеет номинальную емкость 0,45 А.ч, или 450 мА.ч. Аналогично расшифровываются названия НКГЦ - 1,8 и НКГЦ - 3,2: их емкость соответственно равна 1,8 А.ч для типоразмера 343 и 3,2 А.ч для типоразмера 373.

С зарубежными аккумуляторными элементами дело обстоит сложнее. Имеется несколько зарубежных и международных стандартов, принятых фирмами стран Европы, Северной Америки, Азии. Различаются они между собой типоразмерами и номинальной емкостью. В последнее время за счет совершенствования технологии производства емкость аккумуляторных элементов увеличена в 2...4 раза. Так, если 10 лет назад аккумуляторные элементы типоразмеров 316 имели номинальную емкость 0,45...0,6 А.ч, то теперь их емкость достигает 1,5...2 А-ч. Причем, некоторые из этих образцов нечувствительны к зарядке при неполной разрядке, к чему так чувствительны обычные элементы выпуска прошлых лет.

В таблице приведены условные обозначения аккумуляторных элементов, имеющих различные системы условных обозначений для каждого типоразмера. Там же указана продолжительность времени зарядки каждого элемента постоянным током определенной величины. Никель-кадмиевые аккумуляторные элементы допускают зарядку удвоенным значением тока, за счет чего вдвое сокращается время зарядки. Если под рукой нет зарядного устройства для зарядки аккумулятора данного типоразмера, а есть только зарядное устройство с меньшим током зарядки, то тогда зарядка может быть произведена меньшим током, но за большее время.

Имеющиеся в продаже зарядные устройства отечественного и зарубежного производства имеют указание на типоразмер заряжаемых элементов, величину тока зарядки и время, необходимое для нее. В литературе описано немало конструкций самодельных зарядных устройств, но все же лучше воспользоваться фирменным, хотя бы из соображения обеспечения личной электробезопасности, так как обычно зарядка осуществляется от сети переменного тока 220 В, хотя имеются зарядные устройства, работающие от бортовой сети автомобиля постоянного тока напряжением 12 В.

Рабочие характеристики аккумуляторов

Основными рабочими характеристиками аккумуляторных элементов и батарей являются время разрядки при заданном токе и реальная электрическая емкость. Обе характеристики определяются номинальной электрической емкостью и сопротивлением нагрузки, либо величиной потребляемого тока. На рис. 1 приведены результаты измерения напряжения одного аккумуляторного элемента с различным значением номинальной емкости от 180 до 1300 мА.ч при постоянном разрядном токе 100 мА. Такой ток потребляет современный аудиоплейер в режиме воспроизведения. И как видно из рисунка, время разрядки, измеряемое в процессе падения напряжения с 1,35 до 1,0 В, составляет от 1,6 до 11,2 ч. То есть, время нормальной работы аккумулятора практически прямо пропорционально его номинальной емкости.


При этом очевидно, что использование аккумуляторов с большим значением номинальной емкости выгодно вдвойне. Во-первых, резко возрастает время, в течение которого плейер или приемник работает нормально и не требует подзарядки. Во-вторых, уменьшается число циклов зарядка/разрядка, приходящееся на год, что продлевает общий срок службы аккумуля тора. Кроме того, как правило, цена аккумулятора большей емкости в пересчете на 1 А.ч меньше, чем у аккумуляторов меньшей емкости.

Здесь следует отметить, что все рабочие характеристики аккумуляторов рассчитаны наилучшим образом применительно к режиму, при котором разрядка производится десятичасовым разрядным током, т.е. током, равным номинальной емкости, деленной на 10 ч. При значительном возрастании потребляемого тока по сравнению с десятичасовым значением его реальная электрическая емкость падает. Это видно из рис. 2, где приведены результаты измерения реальной емкости аккумуляторного элемента различной номинальной емкости в зависимости от величины потребляемого тока.

Вертикальными пунктирными линиями обозначены границы возможных значений этого тока - от 100 до 300 м.А, куда попадают большинство аудиоплейров, проигрывателей компакт-дисков и портативных приемников.

Из рис. 2 видно, что только аккумуляторы на 1...1,5 А.ч эффективно используют свою энергию. При всех прочих равных условиях аккумуляторы большей емкости выгоднее аккумуляторов малой мощности при работе с большим потребляемым током.

Как заряжать и разряжать аккумуляторы

Для нормальной работы плейера или приемника необходимо, чтобы все элементы имели один и тот же номинал емкости. Как заряжать аккумуляторы, известно всем: взять отработавшие свой срок элементы, проверить их остаточное напряжение и, если необходимо, разрядить каждый из них до 1 В. После чего элементы вставляются в зарядное устройство согласно их полярности и устройство включается в сеть 220 В (или 12 В).

По истечении времени, предписанного инструкцией,зарядное устройство выключается из сети, элементы вынимают из него и вставляют в аппаратуру. Теперь аккумуляторы начнут работать - отдавать накопленную энергию по своему прямому назначению.

В тех случаях, когда вопрос о сохранении, а тем более продлении гарантированного срока службы аккумуляторов не стоит, процедура зарядки может производиться без контроля остаточного напряжения и разрядки элементов до напряжения 1 В. В противном случае операция разрядки до заданного значения может быть осуществлена с помощью простейшего разрядного устройства, принципиальная схема которого приведена на рис. 3.

Здесь аккумуляторные элементы поодиночке или группой подключены к стабилизатору напряжению, выполненному на резисторе R1, и двух соединенных последовательно кремниевых транзисторах, работающих в режиме насыщения коллекторного тока. Этот режим достигается тем, что база и коллектор каждого транзистора соединены между собой. В таком случае каждый транзистор становится стабилизатором напряжения 0,5 В при изменении тока через него в пределах от 1 до 200 мА. Использование двух последовательно соединенных транзисторов дает требуемое напряжение 1 В. При подключении к данному стабилизатору одного или нескольких элементов, даже имеющих большой разброс остаточного напряжения, в конце концов все они будут иметь один и тот же остаточный потенциал - 1 В. Процесс разрядки обычно занимает не более одного-двух часов в самом худшем случае. Убедиться в окончании процесса разрядки можно путем измерения напряжения сначала на элементах, а потом на транзисторах. Если процесс разрядки закончен, то напряжения будут равны 1 В.

Для контроля момента окончания цикла разрядки аккумуляторных элементов по схеме рис. 3 рекомендуется измерить падение напряжения на резисторе R1, которое должно быть равно нулю.

При покупке аккумуляторных элементов зарубежного производства возникают определенные лингвистические трудности с переводом на русский язык этикеток, написанных на английском, немецком и других языках. Ниже приводятся переводы наиболее важных фраз и предложений.

Nickel-Cadmium Battery 1000 mA.h 1,2 V
Никель-кадмиевый аккумулятор емкостью 1000 мА.ч и напряжением 1,2 В

Standart Charge: 15 House at 100 mA
Стандартный режим зарядки: 15 ч током 100 мА

Quick Charge: 6 Hours at mA
Быстрая зарядка: 6 ч при токе 250 мА

CAUTION: Do not dispose of in fire or short circuit
Предупреждение: не помещайте в огонь и не делайте короткое замыкание

Ni/Cd, 1.2 Accumulator, 600mA.h, 60IRS, bis 1000 aufladbar, up to 1000 times rechargeable, Normallabung: 14 Std. mit 60 mA, Standart charges: 14 h. at mA. IEC KR 15/51 (R6)
Никель-кадмиевый аккумулятор напряжением 1,2 В, емкостью 600 мА.ч. Выдерживает 1000 циклов зарядки/разрядки. Зарядка в течение 14 ч током 60 мА.

ACCU PLUS -
Аккумулятор повышенной емкости

Rechargeable Cell -
Подзаряжаемый элемент, может быть аккумуляторным или гальваническим

Р-100 AARM KR 15/51 1000 mA.h 1.2 V1000 F
Аккумуляторный элемент напряжением 1,2 В емкостью 1000 мА.ч, рассчитанный на 1000 циклов зарядки/разрядки

Литература
1. Варламов Р.Г. Современные источники питания. Справочник. М.: ДМК, 1998, 187 с.
2. В.Боравский. Зарядный "универсал" для аккумуляторных блоков питания портативных радиостанций. Ремонт&Сервис, 2000, № 2, с. 60-62.