Системы авто. Регулятор напряжения генератора: схема, проверка Принцип действия регулятора напряжения

Планируемое внедрение кондиционера на элементах Пельтье потихоньку движется. Следующим этапом после установки генератора на 135 Ампер стала модернизация регулятора напряжения. Основной проблемой здесь является работа кондиционера на ХХ двигателя. Дело в том, что при шкиве генератора втрое меньшего размера, чем шкив коленчатого вала, при 1000 оборотах двигателя ротор генератора будет вращаться со скоростью в 3000 оборотов минут, что по таблице токоотдачи даст 110 Ампер при 13,5 Вольтах:

В принципе при потреблении 10ю элементами пельте 60 Ампер должно хватить. Однако, я так думаю, эти показания были сняты при подаче на ротор тех самых 13,5 Вольт. И вот здесь мы упираемся в штатный регулятор напряжения, для которого прямо декларируется падение напряжения в 2 Вольта, то есть на ротор пойдёт максимум 11,5 Вольт. Разница в мощности на роторе составит 13,5 * 13.5 / 11,5 * 11,5 = 37%. То есть от 110 Ампер останется уже только 70, из которых 6 уйдёт на сам генератор. А есть ещё и штатные потребители, то есть на кондиционер останется мало тока. Падение 2х Вольт на регуляторе обусловлено применением в нём качестве ключа биполярного транзистора.

Также при модернизации мне хотелось добавить функцию отключения генератора при пуске двигателя. То есть штатно при работе стартера генератор пытается генерировать, при этом расходуя до 6 ампер тока и тормозя коленчатый вал. При отключении же генератора мы получим минимум 10% прирост в скорости вращения коленчатого вала стартером. Основной эффект от этого должен быть зимой, когда аккумулятор работает на грани своих возможностей.

Итак, при разработке регулятора напряжения необходимо учесть следующие факторы:

  • Широкий рабочий диапазон температур от -40 до +80,
  • Стойкость к скачкам напряжения до 60-80 Вольт,
  • Стойкость к атмосферным воздействиям,
  • Стойкость к вибрациям,
  • Возможность отключения при пуске двигателя,
  • Малое падение напряжения,
  • Отсутствие механических элементов.

Одной из альтернативных схем реглятора напряжения является следующая:

Однако у неё следующие недостатки:

  • Диапазон температур LM393 всего от 0 до +70,
  • LM393 максимально выдерживает 30 Вольт питания,
  • Затвор ирф 3205 максимум рассчитан на 10 Вольт, нет защиты на схеме,
  • ирф 3205 максимум выдерживает 30 Вольт на выводах сток-исток (биполярный транзистор в оригинале рассчитан на 80 Вольт),
  • полевой транзистор управляется без ключа - это приведёт к его нагреву,
  • Отсутствует возможность отключения при пуске двигателя,
  • В схеме присутствует подстроечный резистор - не рекомендую использовать в авто ничего подстроечного,
  • реле потенциально слабое звено.

Оригинальная схема регулятора напряжения выглядит так:

Принцип работы примитивный - при превышении установленного напряжения ротор отключается, после снижения напряжения ротор вновь подключается. Принцип работы как у поплавковой камеры карбюратора, ну или бачка унитаза. Меня заинтересовали элементы разрядки энергии остаточной индукции ротора - дроссель 7, диод 12 и конденсатор 11. Для этого купил новый регулятор напряжения, за компанию хотел использовать его корпус:

Как вы понимаете, на завод давно пробрались "эффективные" менеджеры и выкинули эти ненужные элементы, оставив только защитный диод:

При этом, сама плата изготовлена у нас - видна качественная пайка (китайцы так не умеют) и покрыта лаком. Впоследствии вскрыл свой оригинальный регулятор напряжения 96 года и узрел те самые защитные элементы:

При это обратите внимание, болт, через который идёт масса ещё и пропаян, в новоделе просто затянута клемма. Ещё из замечаний к новоделу - тонкие провода, идущие на разъём. Максимальный ток на роторе может быть до 6 Ампер, это подразумевает провод сечением 2 кв. мм., или 1,5 мм в диаметре.

В итоге разработал собственную схему:

За основу взял ШИМ step-down стабилизатор lm2576-adj он в своё время себя хорошо зарекомендовал в светодиодных ПТФ . Микросхема TC4420EPA - это ключ, обеспечивает мгновенное переключение полевого транзистора, отчего тот не греется попусту. Транзистор изначально взял CEB4060AL, про него дальше напишу более подробно. Все детали рассчитаны на диапазон от -40 до +80, большинство деталей было куплено в магазине Чип НН . Назначение деталей:

  • диод д1 - не знаю зачем, в штаном регуляторе должен быть, на напряжение 400 Вольт, ток в 1 Ампер.
  • резистор р3, конденсатор ц1 и два стабилитрона вд1 и вд2 защищают управляющие микросхемы и затвор полевого транзистора от скачков напряжения. При превышении 16 Вольт откроются стабилитроны и излишек напряжения рассеется на резисторе р3. Мощность резистора 2 Ватта, стабилитроны по 1 Ватту. Конденсатор несколько сот микрофарад на напряжение 50 Вольт
  • Резисторы р1 и р2 - делитель напряжения, по которому ориентируется стабилизатор. Придётся подбирать по месту.
  • дд1 - ШИМ стабилизатор изменяет скважность импульсов на полевом транзистор и соответственно на роторе. Имеет хитрый вывод 5, при подаче напряжения на который ШИМ отключается, мы его содиним с реле стартера. Р5 нужен для корректной работы стабилизатора, на этом выводе открытый то ли коллектор, то ли эмиттер.
  • резистор р4 гарантированно снимает напряжения со входа отключения, то есть микросхема не зависнет в промежуточном состоянии, диод д3 нужен для разрядки напряжения с удерживающей обмотки реле стартера. Диод д2 ограничивает управляющее напряжение.
  • микросхема дд2 ключ управления полевым транзистором, обеспечивает его мгновенное отключение\включение. Это уменьшает нагрев ключевого транзистора в промежуточных состояниях и соответственно повышает КПД схемы. Конденнсатор ц2 поставил по рекомендации даташита.
  • резистор р6 гарантированно перекрывает транзистор в непонятных ситуациях.
  • диодов д4 и д5 два. Так как я использовал UF4007, а они выдерживают до 1 Ампера, в штатной схеме стоит диод на 1,5 Ампера. Они разряжают накопленную в роторе энергию при размыкании цепи.
  • индуктивность л1 и конденсатор ц3 обеспечивают плавную разрядку ротора без большого скачка в схеме.
Жирным я специально указал траекторию движения максимального тока. От вывода Ш до земли - именно здесь течёт максимальный ток, то есть масса регулятора напряжения - важнейший контакт.

Платы я вырезаю. Мне так удобнее. Вот плата снизу:

И сверху:

Все маломощные резисторы и конденсатор SMD:

Полевой транзистор изначально использовал CEB4060AL - по причине того, что он на затвор держит до 20 Вольт, а на истоке до 60 Вольт относительно стока. Однако при испытаниях током в 6 Ампер - лампочкой ПТФ на 55 Ватт столкнулся с нагревом транзистора. Не будь драйвера, можно было свалить на медленное открытие/закрытие транзистора, но драйвер был. Взялся за куркулятор. Сопротивление канала CEB4060AL 80 миллиОм. Да, много - но это расплата за способность держать высокое напряжение. Итак мощность рассеяния равна 6 Ампер * 6 Ампер * 0,08 Ом = 2,9 Ватта. Похоже на правду. В общем тепловыделение в 3 Ватта можно было бы стерпеть, если бы не одно но. Под капотом запросто может до +80, а в таких условиях дополнительное тепловыделение просто добъёт схему.

Электромеханический, в котором с помощью вибрирующих контактов изменяется ток в обмотке возбуждения генератора переменного тока. Работа вибрирующий контактов обеспечивается таким образом, чтобы с ростом напряжения бортовой сети уменьшался ток в обмотке возбуждения. Однако вибрационные регуляторы напряжения поддерживают напряжение с точностью 5-10%, из-за этого существенно снижается долговечность аккумулятора и освети тельных ламп автомобиля.
Электронные регуляторы напряжения бортовой сети типа Я112 , которые в народе называют «шоколадка». Недостатки этого регулятора известны всем — низкая надежность, обусловленная низким коммутационным током 5А и местом установки прямо на генераторе, что ведет к перегреву регулятора и выходу его из строя. Точность поддержания напряжения остается, несмотря на электронную схему, очень низкой и составляет 5% от номинального напряжения.

Вот поэтому я решил сделать устройство, которое свободно от вышеизложенных недостатков. Регулятор прост в настройке, точность поддержания напряжения составляет 1% от номинального напряжения. Схема, приведенная на рис.1 прошла испытания на многих автомобилях, в том числе и грузовых в течение 2-х лет и показала очень хорошие результаты.


Рис.1.

Принцип работы

При включении замка зажигания напряжение +12В подается на схему электронного регулятора. Если напряжение, поступающее на стабилитрон VD1 с делителя напряжения R1R2 недостаточно для его пробоя, то транзисторы VT1, VT2 находятся в закрытом состоянии, а VT3 — в открытом. Через обмотку возбуждения протекает максимальный ток, выходное напряжение генератора начинает расти и при достижении 13,5 — 14,2В возникает пробой стабилитрона.

Благодаря этому открываются транзисторы VT1, VT2, соответственно транзистор VT3 закрывается, ток обмотки возбуждения уменьшается и снижается выходное напряжение генератора. Снижения выходного напряжения примерно на 0,05 — 0,12В достаточно, чтобы стабилитрон перешел в запертое состояние, после чего транзисторы VT1, VT2 закрываются, а транзистор VT3 открывается и через обмотку возбуждения снова начинает протекать ток. Этот процесс непрерывно повторяется с частотой 200 — 300 Гц, которая определяется инерционностью магнитного потока.

Конструкция

При изготовлении электронного регулятора, следует обратить особое внимание на отвод тепла от транзистора VT3. На этом транзисторе, работающем в ключевом режиме, 1ем не менее выделяется значительная мощность, поэтому его следует монтировать на радиаторе. Остальные детали можно разместить на печатной плате, прикрепленной к радиатору.

Таким образом, получается очень компактная конструкция. Резистор R6 должен быть мощностью не менее 2Вт. Диод VD2 должен иметь прямой ток около 2А и обратное напряжение не менее 400В, лучше всего подходит КД202Ж, но возможны и другие варианты. Транзисторы желательно применить те, которые указаны на принципиальной схеме, особенно VT3. Транзистор VT2 можно заменить на КТ814 с любыми буквенными индексами. Стабилитрон VD1 желательно установить серии КС с напряжением стабилизации 5,6-9В, (типа КС156А, КС358А, КС172А), при этом увеличится точность поддержания напряжения.

Настройка

Правильно собранный регулятор напряжения не нуждается в особой настройке и обеспечивает стабильность напряжения бортовой сети примерно 0,1 — 0,12В, при изменении числа оборотов двигателя от 800 до 5500 об/мин. Проще всего настройку производить на стенде, состоящем из регулируемого блока питания 0 — 17В и лампочки накаливания 12В 5-10Вт. Плюсовой выход блока питания подключают к клемме “+” регулятора, минусовой выход блока питания подключают к клемме «Общ”, а лампочку накаливания подключают к клемме «Ш» и клемме «Общ” регулятора.

Настройка сводится к подбору резистора R2, который изменяют в пределах 1-5 кОм, и добиваются порога срабатывания на уровне 14,2В. Это и есть поддерживаемое напряжение бортовой сети. Увеличивать его выше 14,5В нельзя, поскольку при этом резко сократится ресурс аккумуляторов.

Создано реле регулятор напряжения генератора для корректировки выдаваемого в бортовую сеть и на клеммы аккумулятора «вольтажа» в заданном диапазоне 13,8 – 14,5 В (реже до 14,8 В). Кроме того, регулятор корректирует напряжение на обмотке самовозбуждения генератора.

Назначение реле регулятора напряжения

Независимо от стажа и стиля вождения владелец авто не может обеспечить одинаковые обороты двигателя в разные моменты времени. То есть, коленвал ДВС, передающий крутящий момент генератору, вращается с разной скоростью. Соответственно, генератор вырабатывает разное напряжение, что крайне опасно для АКБ и прочих потребителей бортовой сети.

Поэтому замена реле регулятора генератора должна производится при недозаряде и перезаряде аккумулятора, горящей лампочке, мигании фар и прочих перебоях электроснабжения бортовой сети.

Взаимосвязь источников тока авто

В транспортном средстве находится минимум два источника электроэнергии:

  • аккумулятор – необходим в момент запуска ДВС и первичного возбуждения обмотки генератора, энергию не создает, а только расходует и накапливает в момент подзарядки
  • генератор – питает бортовую сеть на любых оборотах и подпитывает АКБ только на высоких оборотах

В бортовую сеть необходимо подключение обоих указанных источников для корректной работы двигателя и прочих потребителей электричества. При поломке генератора АКБ «протянет» максимум 2 часа, а без аккумулятора не заведется двигатель, приводящий в движение ротор генератора.

Существуют исключения – например, а счет остаточной намагниченности обмотки возбуждения штатный генератор ГАЗ-21 запускается самостоятельно при условии постоянной эксплуатации машины. Можно завести авто « с толкача», если в нем установлен генератор постоянного тока, с прибором переменного тока такой трюк невозможен.

Задачи регулятора напряжения

Из школьного курса физики каждый автолюбитель должен помнить принцип работы генератора:

  • при взаимном перемещении рамки и окружающего ее магнитного поля в ней возникает электродвижущая сила
  • электромагнитом генераторов постоянного тока служат статоры, ЭДС, соответственно возникает в якоре, ток снимается с коллекторных колец
  • в генераторе переменного тока намагничивается якорь, электроэнергия возникает в обмотках статора

Упрощенно можно представить, что на величину выходящего с генератора напряжения влияет значение магнитной силы и скорость вращения поля. Основная проблема генераторов постоянного тока – пригорание и залипание щеток при съеме с якоря токов большой величины – решена переходом на генераторы переменного тока. Ток возбуждения, подающийся на ротор для возбуждения магнитной индукции, на порядок ниже, снимать электроэнергию с неподвижного статора гораздо легче.

Однако вместо постоянно расположенных в пространстве клемм «–» и «+» производители авто получили постоянное изменение плюса и минуса. Подзарядка аккумулятора переменным током не возможна в принципе, поэтому диодным мостиком его предварительно выпрямляют.

Из этих нюансов плавно вытекают задачи, решаемые реле генератора:

  • подстройка тока в обмотке возбуждения
  • выдерживание диапазона 13,5 – 14,5 В в бортовой сети и на клеммах аккумулятора
  • отсечение питания обмотки возбуждения от АКБ при заглушенном двигателе

Поэтому называют регулятор напряжения еще и реле зарядки, а на панель выведена сигнальная лампа процесса подзарядки АКБ. В конструкцию генераторов переменного тока функция отсечения обратного тока заложена по умолчанию.

Разновидности реле регуляторов

Прежде, чем произвести самостоятельный ремонт устройства регулирования напряжения, необходимо учесть, что существует несколько типов регуляторов:

  • внешние – повышают ремонтопригодность генератора
  • встраиваемые – в пластину выпрямителя или щеточный узел
  • регулирующие по минусу – появляется дополнительный провод
  • регулирующие по плюсу – экономичная схема подключения
  • для генераторов переменного тока – нет функции ограничения напряжения на обмотку возбуждения, так как она заложена в самом генераторе
  • для генераторов постоянного тока – дополнительная опция отсечения АКБ при неработающем ДВС
  • двухуровневые – морально устарели, применяются редко, регулировка пружинами и небольшим рычагом
  • трехуровневые – дополнены специальной платой сравнивающего устройства и сигнализатором согласования
  • многоуровневые – в схеме имеются 3 – 5 добавочных резисторов и система слежения
  • транзисторные – в современных авто не используются
  • релейные – улучшенная обратная связь
  • релейно-транзисторные – универсальная схема
  • микропроцессорные – небольшие габариты, плавные регулировки нижнего/верхнего порога срабатывания
  • интегральные – встраиваются в щеткодержатели, поэтому заменяются после истирания щеток

Внимание: Без доработки схемы «плюсовой» и «минусовой» регулятор напряжения являются не взаимозаменяемыми приборами.

Реле генераторов постоянного тока

Таким образом, схема подключения регулятора напряжения при эксплуатации генератора постоянного тока сложнее. Поскольку в стояночном режиме авто, когда ДВС заглушен, необходимо отключить генератор от АКБ.

При диагностике проверка реле происходит на выполнение трех его функций:

  • отсечка аккумулятора во время стоянки машины
  • ограничение максимального тока на выходе генератора
  • регулировка напряжения для обмотки возбуждения

При любой неисправности требуется ремонт.

Реле генераторов переменного тока

В отличие от предыдущего случая диагностика своими руками регулятора генератора переменного тока немного проще. В конструкцию «автомобильной электростанции» уже заложена функция отсечки питания во время стоянки от АКБ. Остается проверить лишь напряжение на обмотке возбуждения и на выходе с генератора.

Если в машине стоит генератор тока переменного, его невозможно завести разгоном с горки. Так как остаточного намагничивания на возбуждающей обмотке здесь нет по умолчанию.

Встроенные и внешние регуляторы

Для автолюбителя важно знать, что измеряют и начинают регулировать напряжение реле в конкретном месте их установки. Поэтому встроенные модификации воздействуют непосредственно на генератор, а выносные «не знают» о его наличии в машине.

Например, если выносное реле подключено к катушке зажигания, его работа будет направлена на регулировку напряжения лишь на этом участке бортовой сети. Поэтому, прежде чем узнать, как проверить реле выносного типа, следует убедиться, что оно подключено правильно.

Управление по «+» и «–»

В принципе схемы управления по «минусу» и «плюсу» отличаются лишь схемой подключения:

  • при монтаже реле в разрыв «+» одна щетка подключается к «массе», другая к клемме регулятора
  • если же подключить реле в разрыв «–», то одну щетку нужно подключить к «плюсу», другую к регулятору

Однако в последнем случае появится еще один провод, поскольку реле напряжения является устройством активного типа. Для него необходимо индивидуальное питание, поэтому «+» нужно подвести отдельно.

Двухуровневые

На начальном этапе в машинах устанавливались механические двухуровневые регуляторы напряжения с простым принципом действия:

  • через реле проходит электрический ток
  • возникающее магнитное поле притягивает рычаг
  • сравнивающим устройством служит пружина с заданным усилием
  • при увеличении напряжения контакты размыкаются
  • на возбуждающую обмотку поступает меньший ток

Использовались механические двухуровневые реле в автомобилях ВАЗ 21099. Основным минусом являлась работа с повышенным износом механических элементов. Поэтому на смену этим приборам пришли электронные (бесконтактные) реле напряжения:

  • делитель напряжения собран из резисторов
  • стабилитрон является задающим устройством

Сложная схема соединения и недостаточно эффективный контроль напряжения привели к снижению спроса на эти приборы.

Трехуровневые

Однако двухуровневые регуляторы, в свою очередь, так же уступили позиции более совершенным трехуровневым и многоуровневым приборам:

  • напряжение выходит с генератора на специальную схему через делитель
  • информация обрабатывается, действительное напряжение сравнивается с минимальным и максимальным пороговым значением
  • сигнал рассогласования регулирует силу тока, поступающего на возбуждающую обмотку

Более совершенными считаются реле с частотной модуляцией – в них нет привычных сопротивлений, зато увеличена частота срабатывания ключа электронного. Управление осуществляется логическими схемами.

Принцип работы реле регулятора

Благодаря встроенным резисторам и специальным схемам реле получает возможность сравнивать величину вырабатываемого генератором напряжения. После чего, слишком высокое значение приводит к отключению реле, чтобы не перезарядить аккумулятор и не испортить электроприборы, подключенные в бортовую сеть.

Любые неисправности приводят именно к этим последствиям, приходит в неисправность батарея АКБ или резко увеличивается эксплуатационный бюджет.

Переключатель лето/зима

Вне зависимости от сезона и температуры воздуха работа генератора всегда стабильна. Как только его шкив начинает вращаться, электроток вырабатывается по умолчанию. Однако зимой внутренности аккумулятора замерзают, он восполняет заряд значительно хуже, чем летом.

Переключатели лето/зима находятся либо на корпусе регулятора напряжения, либо этим обозначением подписаны соответствующие разъемы, которые нужно найти и подсоединить к ним проводку в зависимости от сезона.

Ничего необычного в этом переключателе нет, это лишь грубые настройки реле регулятора, позволяющие повысить до 15 В напряжение на клеммах аккумулятора.

Подключение в бортовую сеть генератора

Если при замене генератора вы подключаете новый прибор самостоятельно, необходимо учесть нюансы:

  • вначале следует проверить целостность и надежность контакта провода от кузова машины к корпусу генератора
  • затем можно подсоединять клемму Б реле регулятора с «+» генератора
  • вместо «скруток», начинающих греться через 1 – 2 года эксплуатации, лучше использовать пайку проводов
  • заводской провод нужно заменить кабелем сечения 6 мм2 минимум, если вместо штатного генератора монтируется электроприбор, рассчитанный на ток больше 60 А
  • амперметр в цепи генератор/аккумулятор показывает, мощность какого источника электроснабжения в данный момент выше в бортовой сети

Амперметры – нужные приборы, с помощью которых можно определить заряд АКБ и работоспособность генератора. Без особых причин не рекомендуется убирать их из схемы.

Схемы подключения регулятора выносного

Монтируется выносное реле регулятора напряжения генератора только после выяснения, в разрыв какого провода оно должно быть подключено. Например:

  • на старых РАФ, Газелях и «Бычках» используются реле 13.3702 в полимерном или стальном корпусе с двумя контактами и двумя щетками, монтируются в «–» разрыв цепи, клеммы всегда промаркированы, «+» обычно берется с катушки зажигания (Б-ВК клемма), контакт Ш регулятора соединяется со свободной клеммой щеточного узла
  • в «жигулях» применяются реле регуляторы 121.3702 белого и черного цвета, существуют двойные модификации, в которых при выходе из строя одного прибора работа второго устройства продолжается простым переключением на него, монтируется в разрыв «+» клеммой 15 к выводу катушки зажигания Б-ВК, к щеточному узлу крепится проводом клемма 67

Встраиваемые реле-регуляторы автолюбители называют «шоколадками», маркированными Я112. Они монтируются в специальные щеткодержатели, прижимаются винтами и защищаются дополнительно крышкой.

На автомобилях ВАЗ реле обычно встроены в щеточный узел, полная маркировка Я212А11, подключаются к замку зажигания.
Если владелец меняет штатный генератор на старом отечественном ВАЗ на устройство переменного тока от иномарки или современной Лады, подключение производится по другой схеме:

  • вопрос крепления корпуса автолюбитель решает самостоятельно
  • аналогом клеммы «плюс» здесь служит контакт В или В+, его включают в бортовую сеть через амперметр
  • выносные реле регуляторы здесь обычно не используются, а встраиваемые уже интегрированы в щеточный узел, из них выходит единственный провод с маркировкой D либо D+, который подсоединяется к замку зажигания (к клемме катушки Б-ВК)

Для дизельных ДВС в генераторах может присутствовать клемма W, которая присоединяется к тахометру, ее игнорируют при установке на авто с бензиновым мотором.

Проверка подключения

После установки трехуровневого или иного реле-регулятора необходима проверка работоспособности:

  • двигатель заводится
  • напряжение в бортовой сети контролируется на разных оборотах

После установки генератора переменного тока и подключения его по вышеприведенной схеме владельца может ожидать «сюрприз»:

  • при включении ДВС запускается генератор, измеряется напряжение на средних, больших и малых оборотах
  • после выключения зажигания ключом …. двигатель продолжает работать

В этом случае заглушить ДВС можно либо сняв провод возбуждения, либо отпустив сцепление с одновременным нажатием тормоза. Все дело в наличии остаточной намагниченности и постоянном самовозбуждении обмотки генератора. Проблема решается установкой в разрыв возбуждающего провода лампочки:

  • она горит при незапущенном генераторе
  • гаснет после его запуска
  • проходящий через лампу ток недостаточен, чтобы возбудить обмотку генератора

Эта лампа автоматически становится индикатором наличия зарядки АКБ.

Диагностика реле регулятора

Определить поломки регулятора напряжения можно по признакам косвенным. Прежде всего, это некорректная зарядка АКБ:

  • перезаряд – выкипает электролит, раствор кислоты попадает на детали кузова
  • недозаряд – ДВС не запускается, лампы горят в пол накала

Однако предпочтительнее диагностика приборами – вольтметром или тестером. Любое отклонение от максимального значения напряжения 14,5 В (в некоторых авто бортовая сеть рассчитана на 14,8 В) на больших оборотах или минимального значения 12,8 В на малых оборотах становится причиной замены/ремонта реле регулятора.

Встроенного

Чаще всего регулятор напряжения интегрирован в щетки генератора, поэтому необходимо уровневое обследование этого узла:

  • после снятия защитной крышки и ослабления винтов щеточный узел извлекается наружу
  • при износе щеток (осталось меньше 5 мм их длины) замена должна производится в обязательном порядке
  • диагностика генератора мультиметром производится в комплекте с аккумулятором или зарядным устройством
  • «минусовой» провод от источника тока замыкается на соответствующую пластину регулятора
  • «плюсовой» провод от ЗУ или АКБ подключается к аналогичному разъему реле
  • тестер устанавливается в режим вольтметра 0 – 20 В, щупы накладываются на щетки
  • в диапазоне 12,8 – 14,5 В между щетками должно быть напряжение
  • при увеличении напряжения больше 14,5 В стрелка вольтметра должна быть на нуле

В данном случае вместо вольтметра можно использовать лампу, которая должна гореть в указанном интервале напряжения, гаснуть при увеличении этой характеристики больше этого значения.

Провод, управляющий тахометром (маркировка W только на реле для дизелей) прозванивается мультиметром в режиме тестера. На нем должно быть сопротивление около 10 Ом. При снижении этого значения провод «пробит», его следует заменить новым.

Выносного

Никаких отличий в диагностике для выносного реле не существует, зато его не нужно демонтировать из корпуса генератора. Проверить реле регулятор напряжения генератора можно при работающем двигателе, изменяя обороты с низких на средние, затем высокие. Одновременно с увеличением оборотов нужно включить дальний свет (как минимум), кондиционер, монитор и прочие потребители (как максимум).

Таким образом, при необходимости владелец транспортного средства может заменить штатное реле регулятор напряжения на более современную модификацию встраиваемого или выносного типа. Диагностика работоспособности доступна собственными силами при наличии обычной автомобильной лампы.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Рис. 1. Способы управления током возбуждения: Г - генератор с параллельным возбуждением; W в - обмотка возбуждения; R д - дополнительное сопротивление; R - балластное сопротивление; К - коммутатор тока (регулирующий орган) в цепи возбуждения; а, б, в,г, д указаны в тексте.

Современный автомобильный двигатель внутреннего сгорания (ДВС) работает в широком интервале изменения оборотов (900:.. 6500 об/мин). Соответственно изменяется и частота вращения ротора автомобильного генератора, а значит и его выходное напряжение.

Зависимость выходного напряжения генератора от оборотов двигателя внутреннего сгорания недопустима, так как напряжение в бортовой сети автомобиля должно быть постоянным и не только при изменении оборотов двигателя, но и при изменении тока нагрузки. Функцию автоматического регулирования напряжения в автомобильном генераторе выполняет специальное устройство - регулятор напряжения автомобильных генераторов . Данный материал посвящен рассмотрению регуляторов напряжения современных автомобильных генераторов переменного тока.

Регулирование напряжения в генераторах с электромагнитным возбуждением

Способы регулирования . Если главное магнитное поле генератора наводится электромагнитным возбуждением, то электродвижущая сила E г генератора может быть функцией двух переменных: частоты n вращения ротора и тока I в в обмотке возбуждения - E г = f(n, I в).

Именно такой тип возбуждения имеет место во всех современных автомобильных генераторах переменного тока, которые работают с параллельной обмоткой возбуждения.

При работе генератора без нагрузки его напряжение U г равно его электродвижущей силе ЭДС E г:
U г = E г = СФ n (1).

Напряжете U г генератора под током I н нагрузки меньше ЭДС E г на величину падения напряжения на внутреннем сопротивлении r г генератора, т.е. можно записать, что
E г = U г + I н r г = U г (1 + β) (2).

Величина β = I н r г /U г называется коэффициентом нагрузки.

Из сравнения формул 1 и 2 следует, что напряжение генератора
U г = nСФ/(1 + β), (3)
где С - постоянный конструктивный коэффициент.

Уравнение (3) показывает, что как при разных частотах (n) вращения ротора генератора (n = Var), так и при изменяющейся нагрузке (β = Var), неизменность напряжения U г генератора может быть получена только соответствующим изменением магнитного потока Ф.

Магнитный поток Ф в генераторе с электромагнитным возбуждением формируется магнитодвижущей силой F в = W I в обмотки W в возбуждения (W - число витков обмотки W в) и может легко управляться с помощью тока I в в обмотке возбуждения, т.е. Ф = f (I в). Тогда U г = f 1 что позволяет удерживать напряжение U г генератора в заданных пределах регулирования при любых изменениях его оборотов и нагрузки соответствующим выбором функции f(I в) регулирования.

Автоматическая функция f(I в) регулирования в регуляторах напряжения сводится к уменьшению максимального значения тока I в в обмотке возбуждения, которое имеет место при I в = U г /R w (R w - активное сопротивление обмотки возбуждения) и может уменьшаться несколькими способами (рис. 1): подключением к обмотке W в параллельно (а) или последовательно (б) дополнительного сопротивления R д: закорачиванием обмотки возбуждения (в); разрывом токовой цепи возбуждения (г). Ток через обмотку возбуждения можно и увеличивать, закорачивая последовательное дополнительное сопротивление (б).

Все эти способы изменяют ток возбуждения скачкообразно, т.е. имеет место прерывистое (дискретное) регулирование тока. В принципе возможно и аналоговое регулирование, при котором величина последовательного дополнительного сопротивления в цепи возбуждения изменяется плавно (д).

Но во всех случаях напряжение U г генератора удерживается в заданных пределах регулирования соответствующей автоматической корректировкой величины тока возбуждения.

Дискретно - импульсное регулирование

В современных автомобильных генераторах магнитодвижущую силу F в обмотки возбуждения, а значит и магнитный поток Ф, изменяют периодическим прерыванием или скачкообразным уменьшением тока I в возбуждения с управляемой частотой прерывания, т.е. применяют дискретно-импульсное регулирование рабочего напряжения U г генератора (ранее применялось аналоговое регулирование, например, в угольных регуляторах напряжения).

Суть дискретно-импульсного регулирования станет понятной из рассмотрения принципа действия генераторной установки, состоящей из простейшего контактно-вибрационного регулятора напряжения, и генератора переменного тока (ГПТ).


Рис. 2. Функциональная (а) и электрическая (б) схемы генераторной установки с вибрационным регулятором напряжения.

Функциональная схема генераторной установки, работающей совместно с бортовой аккумуляторной батареей (АКБ), показана на рис. 2а, а электрическая схема - на рис. 26.

В состав генератора входят: фазные обмотки W ф на статоре СТ, вращающийся ротор R, силовой выпрямитель ВП на полупроводниковых диодах VD, обмотка возбуждения W в (с активным сопротивлением R w). Механическую энергию вращения A м = f (n) ротор генератора получает от ДВС. Вибрационный регулятор напряжения РН выполнен на электромагнитном реле и включает в себя коммутирующий элемент КЭ и измерительный элемент ИЭ.

Коммутирующий элемент КЭ - это вибрационный электрический контакт К, замыкающий или размыкающий дополнительное сопротивление R д, которое включено с обмоткой возбуждения W в генератора последовательно. При срабатывании коммутирующего элемента (размыкание контакта К) на его выходе формируется сигнал τR д (рис. 2а).

Измерительный элемент (ИЭ, на рис. 2а) - это та часть электромагнитного реле, которая реализует три функции:

  1. функцию сравнения (СУ) механической упругой силы F n возвратной пружины П с магнитодвижущей силой F s = W s I s релейной обмотки S (W s - число витков обмотки S, I s - ток в релейной обмотке), при этом результатом сравнения является сформированный в зазоре с период Т (Т = t р + t з) колебаний якоря N;
  2. функцию чувствительного элемента (ЧЭ) в цепи обратной связи (ЦОС) регулятора напряжения, чувствительным элементом в вибрационных регуляторах является обмотка S электромагнитного реле, подключенная непосредственно к напряжению U г генератора и к аккумуляторной батарее (к последней через ключ зажигания ВЗ);
  3. функцию задающего устройства (ЗУ), которое реализуется с помощью возвратной пружины П с силой упругости F п и опорной силой F о.

Работа регулятора напряжения с электромагнитным реле наглядно может быть пояснена с помощью скоростных характеристик генератора (рис. 3 и 4).


Рис. 3. Изменение U г, I в, R б во времени t: а - зависимость текущего значения выходного напряжения генератора от времени t - U г = f (t); б - зависимость текущего значения в обмотке возбуждения от времени - I в = f (t); в - зависимость среднеарифметического значения сопротивления в цепи возбуждения от времени t - R б = f(t); I - время, отвечающее частоте (n) вращения ротора генератора.

Пока напряжение U г генератора ниже напряжения U б аккумуляторной батареи (U г

При увеличении оборотов ДВС напряжение генератора возрастает и при достижении некоторого значения U max) > U б) магнитодвижущая сила F s релейной обмотки становится больше силы F п возвратной пружины П, т.е. F s = I s W s > F п. Электромагнитное реле срабатывает и контакт К размыкается, при этом в цепь обмотки возбуждения включается дополнительное сопротивление.

Еще до размыкания контакта К ток I в в обмотке возбуждения достигает своего максимального значения I в max = U г R w > I вб, от которого, сразу после размыкания контакта К, начинает падать, стремясь к своему минимальному значению I в min = U г /(R w + R д). Вслед за падением тока возбуждения напряжение генератора начинает соответственно уменьшаться (U г = f(I в), что приводит к падению тока I s = U г /R s в релейной обмотке S и контакт К вновь размыкается усилием возвратной пружиной П (F п > F s). К моменту размыкания контакта К напряжение генератора U г становится равным своему минимальному значению U min , но остается несколько больше напряжения аккумуляторной батареи (U гmin > U б).

Начиная с момента размыкания контакта К (n = n min , рис. 3), даже при неизменной частоте n вращения ротора генератора, якорь N электромагнитного реле входит в режим механических автоколебаний и контакт К, вибрируя, начинает периодически, с определенной частотой коммутации f к = I/Т = I/(t р + t з) то замыкать, то размыкать дополнительное сопротивление R д в цепи возбуждения генератора (зеленая линия на участке n = n ср = const, рис. 3). При этом сопротивление R в в токовой цепи возбуждения изменяется скачкообразно от значения R w до величины R w +R д.

Так как при работе регулятора напряжения контакт К вибрирует с достаточно высокой частотой f к коммутации, то R в = R w + τ р где величина τ р - это относительное время разомкнутого состояния контакта К, которое определяется по формуле τ р = t р /(t з + t р), I/(t з + t р) = f к - частота коммутации. Теперь среднее, установившееся для данной частоты f к коммутации, значение тока возбуждения может быть найдено из выражения:

I в ср = U г ср /R в = U г ср /(R w +τ р R д) = U г ср /(R w + R д t р /f к),
где R в - среднеарифметическое (эффективное) значение пульсирующего сопротивления в цепи возбуждения, которое при увеличении относительного времени τ р разомкнутого состояния контакта К также увеличивается (зеленая линия на рис. 4).


Рис. 4. Скоростные характеристики генератора.

Процессы при коммутациях с током возбуждения

Рассмотрим более подробно, что происходит при коммутациях с током возбуждения. Когда контакт К длительно замкнут, по обмотке W в возбуждения протекает максимальный ток возбуждения I в = U г /R w .

Однако обмотка возбуждения W в генератора представляет собой электропроводную катушку с большой индуктивностью и с массивным ферромагнитным сердечником. Как следствие, ток через обмотку возбуждения после замыкания контакта К нарастает с замедлением. Это происходит потому, что скорости нарастания тока препятствует гистерезис в сердечнике и противодействующая нарастающему току - ЭДС самоиндукции катушки.

При размыкании контакта К ток возбуждения стремится к минимальной величине, значение которой при длительно разомкнутом контакте определяется как I в = U г /(R w + R д). Теперь ЭДС самоиндукции совпадает по направлению с убывающим током и несколько продлевает процесс его убывания.

Из сказанного следует, что ток в обмотке возбуждения не может изменяться мгновенно (скачкообразно, как дополнительное сопротивление R д) ни при замыкании, ни при размыкании цепи возбуждения. Более того, при высокой частоте вибрации контакта К ток возбуждения может не достигать своей максимальной или минимальной величины, приближаясь к своему среднему значению (рис. 4), так как величина t р = τ р /f к увеличивается с увеличением частоты f к коммутации, а абсолютное время t з замкнутого состояния контакта К уменьшается.

Из совместного рассмотрения диаграмм, показанных на рис. 3 и рис. 4, вытекает, что среднее значение тока возбуждения (красная линия б на рис. 3 и рис. 4) при повышении оборотов n уменьшается, так как при этом увеличивается среднеарифметическая величина (зеленая линия на рис. 3 и рис. 4) суммарного, пульсирующего во времени, сопротивления R в цепи возбуждения (закон Ома). При этом среднее значение напряжения генератора (U ср на рис. 3 и рис. 4) остается неизменным, а выходное напряжение U г генератора пульсирует в интервале от U max до U min .

Если же увеличивается нагрузка генератора, то регулируемое напряжение U г первоначально падает, при этом регулятор напряжения увеличивает ток в обмотке возбуждения настолько, что напряжение генератора обратно повышается до первоначального значения.

Таким образом, при изменении тока нагрузки генератора (β = V ar) процессы регулирования в регуляторе напряжения протекают так же, как и при изменении частоты вращения ротора.

Пульсации регулируемого напряжения . При постоянной частоте n вращения ротора генератора и при постоянной его нагрузке рабочие пульсации тока возбуждения (ΔI в на рис. 46) наводят соответствующие (по времени) пульсации регулируемого напряжения генератора.

Амплитуда пульсаций ΔU г - 0,5(U max - U min)* регулятора напряжения U г от амплитуды тоновых пульсаций ΔI в в обмотке возбуждения не зависит, так как определяется заданным с помощью измерительного элемента регулятора интервалом регулирования. Поэтому пульсации напряжения U г на всех частотах вращения ротора генератора практически одинаковы. Однако скорость нарастания и спада напряжения U г в интервале регулирования определяется скоростью нарастания и спада тока возбуждения и, в конечном счете, частотой вращения (n) ротора генератора.

* Следует заметить, что пульсации 2ΔU г являются неизбежным и вредным побочным проявлением работы регулятора напряжения. В современных генераторах они замыкаются на массу шунтирующим конденсатором Сш, который устанавливается между плюсовой клеммой генератора и корпусом (обычно Сш = 2,2 мкФ)

Когда нагрузка генератора и частота вращения его ротора не изменяются, частота вибрации контакта К также неизменна (f к = I/(t з + t р) = const). При этом напряжение U г генератора пульсирует с амплитудой ΔU р = 0,5(U max - U min) около своего среднего значения U ср.

При изменении частоты вращения ротора, например, в сторону увеличения или при уменьшении нагрузки генератора, время t з замкнутого состояния становится меньше времени t р разомкнутого состояния (t з

При уменьшении частоты ротора генератора (n↓), или при увеличении нагрузки (β), среднее значение тока возбуждения и его пульсации будут расти. Но напряжение генератора будет попрежнему колебаться с амплитудой ΔU г вокруг неизменной величины U г ср.

Постоянство среднего значения напряжения U г генератора объясняется тем, что оно определяется не режимом работы генератора, а конструктивными параметрами электромагнитного реле: числом витков W s релейной обмотки S, ее сопротивлением R s , величиной воздушного зазора σ между якорем N и ярмом М, а также силой F п возвратной пружины П, т.е. величина U ср есть функция четырех переменных: U ср = f(W s , R s , σ, F п).

Электромагнитное реле с помощью подгиба опоры возвратной пружины П настраивается на величину U ср таким образом, чтобы на нижней частоте вращения ротора (n = n min - рис. 3 и рис. 4) контакт К начинал бы размыкаться, а ток возбуждения успевал бы достигать своего максимального значения I в = U г /R w . Тогда пульсации ΔI в и время t з, замкнутого состояния - максимальны. Этим устанавливается нижний предел рабочего диапазона регулятора (n = n min). На средних частотах вращения ротора время t з примерно равно времени t р, и пульсации тока возбуждения становятся почти в два раза меньше. На частоте вращения n, близкой к максимальной (n = n max - рис. 3 и рис. 4), среднее значение тока I в и его пульсации ΔI в - минимальны. При n max происходит срыв автоколебаний регулятора и напряжение U г генератора начинает возрастать пропорционально оборотам ротора. Верхний предел рабочего диапазона регулятора задается величиной дополнительного сопротивления (при определенной величине сопротивления R w).

Выводы . Вышесказанное о дискретно-импульсном регулировании можно обобщить следующим образом: после пуска двигателя внутреннего сгорания (ДВС), с повышением его оборотов, наступает такой момент, когда напряжение генератора достигает верхнего предела регулирования (U г = U max). В этот момент (n = n min) в регуляторе напряжения размыкается коммутирующий элемент КЭ и сопротивление в цепи возбуждения скачкообразно увеличивается. Это приводит к уменьшению тока возбуждения и, как следствие, к соответствующему падению напряжения U г генератора. Падение напряжения U г ниже минимального предела регулирования (U г = U min) приводит к обратному замыканию коммутирующего элемента КЭ и ток возбуждения начинает снова возрастать. Далее, с этого момента, регулятор напряжения входит в режим автоколебаний и процесс коммутации тока в обмотке возбуждения генератора периодически повторяется, даже при постоянной частоте вращения ротора генератора (n = const).

При дальнейшем увеличении частоты вращения n, пропорционально ей, начинает уменьшаться время t з замкнутого состояния коммутирующего элемента КЭ, что приводит к плавному уменьшению (в соответствии с ростом частоты n) среднего значения тока возбуждения (красная линия на рис. 3 и рис. 4) и амплитуды ΔI в его пульсации. Благодаря этому напряжение U г генератора начинает также пульсировать, но с постоянной амплитудой ΔU г около своего среднего значения (U г = U ср) с достаточно высокой частотой колебаний.

Те же процессы коммутации тока I в и пульсации напряжения U г, будут иметь место и при изменении тока нагрузки генератора (см. формулу 3).

В обоих случаях среднее значение напряжения U г генератора остается неизменным во всем диапазоне работы регулятора напряжения по частоте n (U г ср = const, от n min до n max) и при изменении тока нагрузки генератора от I г = 0 до I г = max.

В сказанном заключается основной принцип регулирования напряжения генератора с помощью прерывистого изменения тока в его обмотке возбуждения.

Электронные регуляторы напряжения автомобильных генераторов

Рассмотренный выше вибрационный регулятор напряжения (ВРН) с электромагнитным реле (ЭМ-реле) имеет ряд существенных недостатков:

  1. как механический вибратор ВРН ненадежен;
  2. контакт К в ЭМ-реле подгорает, что делает регулятор недолговечным;
  3. параметры ВРН зависят от температуры (среднее значение U ср рабочего напряжения U г генератора плавает);
  4. ВРН не может работать в режиме полного обесточивания обмотки возбуждения, что делает его низкочувствительным к изменению выходного напряжения генератора (высокие пульсации напряжения U г) и ограничивает верхнии предел работы регулятора напряжения;
  5. электромеханический контакт К электромагнитного реле ограничивает величину максимального тока возбуждения до значений 2...3 А, что не позволяет применять вибрационные регуляторы на современных мощных генераторах переменного тока.

С появлением полупроводниковых приборов контакт К ЭМ-реле стало возможным заменить эмиттерно-коллекторным переходом мощного транзистора с его управлением по базе тем же контактом К ЭМ-реле.

Так появились первые контактно-транзисторные регуляторы напряжения. В дальнейшем функции электромагнитного реле (СУ, КЭ, УЭ) были полностью реализованы с помощью низкоуровневых (малоточных) электронных схем на полупроводниковых приборах. Это позволило изготавливать чисто электронные (полупроводниковые) регуляторы напряжения.

Особенностью работы электронного регулятора (ЭРН) является то, что в нем отсутствует дополнительный резистор R д, т.е. в цепи возбуждения реализуется практически полное выключение тока в обмотке возбуждения генератора, так как коммутирующий элемент (транзистор) в закрытом (разомкнутом) состоянии имеет достаточно большое сопротивление. При этом становится возможным управление более значительным током возбуждения и с более высокой скоростью коммутации. При таком дискретно-импульсном управлении ток возбуждения имеет импульсный характер, что позволяет управлять как частотой импульсов тока, так и их длительностью. Однако основная функция ЭРН (поддержание постоянства напряжения U г при n = Var и при β = Var) остается такой же, как и в ВРН.

С освоением микроэлектронной технологии регуляторы напряжения сначала стали выпускаться в гибридном исполнении, при котором бескорпусные полупроводниковые приборы и навесные миниатюрные радиоэлементы включались в электронную схему регулятора вместе с толстопленочными микроэлектронными резистивными элементами. Это позволило значительно уменьшить массу и габариты регулятора напряжения.

Примером такого электронного регулятора напряжения может служить гибридно-интегральный регулятор Я-112А, который устанавливается на современных отечественных генераторах.

Регулятор Я-112А (см. схему на рис. 5) является типичным представителем схемотехнического решения задачи дискретно-импульсного регулирования напряжения U г генератора по току I в возбуждения. Но в конструктивном и технологическом исполнении выпускаемые в настоящее время электронные регуляторы напряжения имеют значительные различия.

Рис. 5. Принципиальная схема регулятора напряжения Я-112А: R1...R6 - толстопленочные резисторы: C1, С2 - навесные миниатюрные конденсаторы; V1...V6 - бескорпусные полупроводниковые диоды и транзисторы.

Что касается исполнения регулятора Я-112А, все его полупроводниковые диоды и триоды бескорпусные и смонтированы по гибридной технологии на общей керамической подложке совместно с пассивными толстопленочными элементами. Весь блок регулятора герметичен.

Регулятор Я-112А, как и описанный выше вибрационный регулятор напряжения, работает в прерывистом (ключевом) режиме, когда управление током возбуждения не аналоговое, а дискретно-импульсное.

Принцип работы регулятора напряжения Я-112А автомобильных генераторов

Пока напряжение U г генератора не превышает наперед заданного значения, выходной каскад V4-V5 находится в постоянно открытом состоянии и ток I в обмотки возбуждения напрямую зависит от напряжения U г генератора (участок 0-n на рис. 3 и рис. 4). По мере увеличения оборотов генератора или уменьшения его нагрузки U г становится выше порога срабатывания чувствительной входной схемы (V1, R1-R2), стабилитрон пробивается и через усилительный транзистор V2 выходной каскад V4-V5 закрывается. При этом ток I в в катушке возбуждения выключается до тех пор, пока U г снова станет меньше заданного значения U min . Таким образом, при работе регулятора ток возбуждения протекает по обмотке возбуждения прерывисто, изменяясь от I в = 0 до I в = I max . При отсечке тока возбуждения напряжение генератора сразу не падает, так как имеет место инерционность размагничивания ротора. Оно может даже несколько увеличиться при мгновенном уменьшении тока нагрузки генератора. Инерционность магнитных процессов в роторе и ЭДС самоиндукции в обмотке возбуждения исключают скачкообразное изменение напряжение генератора как при включении тока возбуждения, так и при его выключении. Таким образом, пилообразная пульсация напряжения U г генератора остается и при электронном регулировании.

Логика построения принципиальной схемы электронного регулятора следующая. V1 - стабилитрон с делителем R1, R2 образуют входную цепь отсечки тока I в при U г > 14,5 В; транзистор V2 управляет выходным каскадом; V3 - запирающий диод на входе выходного каскада; V4, V5 - мощные транзисторы выходного каскада (составной транзистор), включенные последовательно с обмоткой возбуждения (коммутирующий элемент КЭ для тока I в); V6 шунтирующий диод для ограничения ЭДС самоиндукции обмотки возбуждения; R4, C1, R3 цепочка обратной связи, ускоряющая процесс отсечки тока I в возбуждения.

Еще более совершенным регулятором напряжения является электронный регулятор в интегральном исполнении. Это такое исполнение, при котором все его компоненты, кроме мощного выходного каскада (обычно это составной транзистор), реализованы с помощью тонкопленочной микроэлектронной технологии. Эти регуляторы настолько миниатюрны, что практически не занимают никакого объема и могут устанавливаться непосредственно на корпусе генератора в щеткодержателе.

Примером конструктивного исполнения ИРН может служить регулятор фирмы BOSCH-EL14V4C, который устанавливается на генераторах переменного тока мощностью до 1 кВт (рис. 6).

Как известно, в любом транспортном средстве генератор является одним из основных узлов, выход из строя которого не позволит осуществить запуск двигателя. Такое устройство состоит из множества компонентов, но одним из самых основных является трехуровневый регулятор. Что представляет собой это устройство напряжения, каково его назначение, какие бывают виды, как произвести диагностику — читайте ниже.

[ Скрыть ]

Характеристика регулятора напряжения

Сколько генератор должен выдавать напряжения, какие существуют виды выносных реле, как работает элемент? Какие признаки неисправности, как повысить или увеличить выходные показатели, что делать если напряжение прыгает? В первую очередь, необходимо разобраться с вопросами конструкции и назначения.

Назначение

Итак, какие признаки неисправности, какие функции выполняет трехуровневый регулятор напряжения? Когда двигатель любого автомобиля запускается, в первую очередь, под воздействием постоянного тока, начинает работать коленвал. Именно из-за постоянного тока он начинает задавать движение ротору, и только после этих действий в работу вступает непосредственно автомобильный генератор. Трехуровневый регулятор напряжения производит мониторинг всех этих процессов, этот элемент также часто называется реле постоянного тока.

Без этого устройства ток в бортовой сети не сможет запустить сам генератор в работу, тем более, что не будет осуществляться контроль подачи тока. Кроме того, трехуровневый регулятор напряжения позволяет удерживать ток в определенном интервале.

Конструкция

Даже самый простой и самодельный регулятор должен быть способным оптимально регулировать напряжения, что осуществляется в результате работы ротора. Как правило, в автомобилях современного производства ротор крутится вправо, но бывают и исключения.

Любой регулятор напряжения генератора, даже самодельный и простой будет состоять из следующих компонентов:

  1. Крыльчатка. Этот компонент монтируется на внешней стороне устройства. Его предназначение заключается в обдуве, а также дальнейшем охлаждении обмотки.
  2. Крышка корпуса, предназначена для закрытия доступа к внутренним компонентам устройства, чтобы защитить конструкцию от грязи, пыли и прочего мусора. Помимо этого, крышка может быть дополнительно оснащена кожухом. Если кожух имеется, то сам регулятор будет установлен за ним.
  3. Устройство выпрямителей. Такая схема состоит из нескольких диодов. Как правило, диодов шесть. Следует отметить, что все диоды схемы подсоединяются друг к другу по так называемому мосту.
  4. Ротор с обмоткой. Данный компонент вращается вокруг оси, таким образом, ротор должен выдавать магнитное поле в корпусе.
  5. Статор — еще один компонент схемы. На корпусе статора находится три обмотки, которые соединены между собой. Эти обмотки схемы позволяют не только выдать большое количество заряда и мощности для АКБ, но и обеспечить постоянным током всю бортовую цепь машины.
  6. Непосредственно реле. Благодаря автомобильному реле схема может поддерживать оптимальный уровень напряжение в необходимом диапазоне. Напряжение не должно быть слишком большое — оно всегда оптимальное (автор видео — Николай Пуртов).

Сколько мощности в амперах должен выдавать автомобильный регулятор после подключения? Схема выработки напряжения осуществляется по определенному принципу. В результате вращений ротора, на обмотку возбуждения всегда воздействует не очень большое напряжение, пока генератор подключен к АКБ. Пока происходит вращение, на выводах появляется переменный ток, поступающий на обмотку. Вращение ротора обеспечивается ремешком генератора.

Сколько должен выдать энергии этот прибор — второстепенный вопрос, ведь когда эта энергия сгенерированная, в первую очередь большое напряжение нужно выпрямить. Для этой цели используются диодные мосты. Поскольку напряжение большое, в работу вступает электронный регулятор напряжения. Данный компонент реагирует на изменения тока, которые происходят на схеме, после чего отправляет эту информацию к сравнивающему прибору, предназначенному для анализа необходимых показаний с теми, которые поступили. Если напряжение на зажимах генератора становится более низким, регулятор начинает увеличивать уровень постоянного тока в схеме, повышая его до необходимого.

Принцип работы

Если подключить к источнику питания обмотку без регулятора, то уровень постоянного тока будет слишком высоким. Благодаря реле на схеме происходит выравнивание этого параметра, чтобы не допустить выхода из строя оборудования. Сам регулятор представляет собой, по сути, выключатель. В том случае, если уровень тока возрастает до 13.-14 вольт, устройство автоматически отключает от сети обмотку и включает ее, если уровень тока слишком низкий. В итоге осуществляется регулярная коммутация проводки с высокой частотой, соответственно, генератор может вырабатывать более высокое напряжение (автор видео — Alex ZW).

Разновидности

Для подключения к бортовой схеме автомобиля существует несколько типов регуляторов, предназначенных для работы в условиях постоянного тока в амперах. Следует отметить, что для некоторых из них характерны определенные неисправности. Но, как показывает практика, в большинстве случаев неисправности у этих устройств обычно идентичные друг другу. Перед тем, как мы расскажем о том, как осуществляется проверка регулятора напряжения постоянного тока в автомобиле и как выявить неисправности, уделим внимание видам.

Так вы сможете понять, какой тип лучше:

  1. Двухуровневый тип является морально устаревшим, но наши автолюбители сегодня продолжают его использовать. В основе таких регуляторов лежит электромагнит, который подключается к датчику обмотки. В качестве задающих элементов выступают пружины, а функцию сравнивающего компонента выполняет подвижный рычаг. Его габариты довольно небольшие, с его помощью выполняется коммутация. Основным недостатком, который зачастую приводит к неисправности, является небольшой ресурс использования устройства.
  2. Электронные устройства на 40 ампер считаются полупроводниковыми. Они характеризуются высоким ресурсом эксплуатации, соответственно, с неисправностями владельцы автомобилей с электронными регуляторами сталкиваются реже.
  3. Трехуровневые конструкции по своему устройству практически не отличаются от тех, которые мы уже рассмотрели. Принципиальная разница заключается только в том, что такие устройства оснащены добавочным сопротивлением.
  4. Многоуровневые — еще один вид. Некоторые эксперты считают, что такие регуляторы лучше других, поскольку они оснащаются тремя и даже пятью добавочными сопротивлениями. Кроме того, есть модели, которые могут работать в следящем режиме.

Стоимость регуляторов может варьироваться в зависимости от типа и модели. Какой лучше приобрести — дело сугубо каждого. В среднем стоимость таких элементов варьируется в районе 5 долларов. Если вам позволяет бюджет, лучше приобрести сразу два регулятора. Почему лучше? Потому что эта деталь является незаменимой в дороге.

Проведение диагностики регулятора напряжения своими руками

Как проверить регулятор напряжения автомобиля для выявления неисправностей своими руками? Что лучше замерить своими руками — амперы или вольты, чем лучше воспользоваться. Для выявления неисправностей своими руками необходимо использовать мультиметр или вольтметр. Необходимо, чтобы на устройстве была шкала для измерений на 15-30 вольт. Диагностику неисправностей автомобильного реле на 40 ампер или ниже своими руками с помощью мультиметра необходимо осуществлять только при заряженном аккумуляторе.

  1. Сначала необходимо включить зажигание.
  2. Запустите своими руками двигатель, дайте ему поработать, при этом фары необходимо включить. Пусть мотор работает, пока количество оборотов не составит около 2.5-3 тыс. Как правило, для этого необходимо подождать около 10 минут.
  3. При помощи вольтметра произведите замер напряжения на клеммах АКБ. Параметр должен составлять около 14.1-14.3 вольт.

В том случае, если во время диагностики показатели получились ниже или выше, лучше приобрести новое реле на 40 ампер. В ходе диагностики штекеры ни в коем случае нельзя перемыкать, поскольку это может привести к деформации и неработоспособности выпрямительного блока. Для получения более точных показателей необходимо убедиться в том, что ремень генератора натянут хорошо.

Видео «Диагностика состояния реле регулятора»

Как своими руками осуществить проверку неисправностей этого элемента — узнайте из видео ниже (автор видео — Вячеслав Чистов).

Извините, в настоящее время нет доступных опросов.