Что такое эхолот: принцип работы и характеристики. Принцип работы эхолота и как им пользоваться

Эхолот представляет собой современное оборудование, которое в значительной степени позволяет облегчить процесс рыбалки. С его помощью можно определить, в какой части водоема наблюдается скопление добычи, что избавляет от самостоятельного длительного исследования подводных глубин.

Как работает эхолот — принцип работы, как пользоваться?

Конструкция всех современных моделей состоит из следующих основных частей:

  1. Дисплей, на который выводится текстовая и графическая информация.
  2. Передатчик, выполняющий функции излучателя.
  3. Приемника поступающих сигналов.
  4. Преобразователь, от которого зависят рабочие параметры, характеристики и возможности оборудования.

Все названные элементы устройства, а также их функции, задачи и прочие особенности, более детально рассматриваются ниже в соответствующих разделах.

Принцип работы эхолота

Сегодня в продаже имеется большое количество разнообразных моделей и их модификаций, различающихся рабочими характеристики и базовым набором функций.

Все подобные устройства функционируют по единому принципу, который заключается в совершении следующего алгоритма действий:

  1. После включения эхолота и перевода его в рабочий режим датчик начинает с заданной периодичностью создавать и распространять высокочастотные импульсы. Большинство современных устройств использует частоты 50 кГц или 200 кГц, реже встречаются модели со смежным значением.
  2. Импульсы, созданные датчиком , начинают распространяться по водоему, при этом они отражаются от всех встреченных препятствий: поверхности дна, рыбы, затонувших объектов.
  3. Эхо-сигналы возвращаются обратно и обрабатываются приемником, что приводит к созданию электрических импульсов.
  4. Импульсы, выработанные приемником , передаются преобразователю, где происходит их многократное усиление.
  5. Преобразованные электрические импульсы поступают на дисплей, где происходит их отображение в понятной для пользователя форме, это могут быть числовые значение или графические изображения.
  6. Дисплей эхолота выполняет функции не только по отображению информации , но и управлению всем устройством, для этого прибор оснащен клавиатурой.

Для отображения на дисплее пространства, находящегося непосредственно под плавательным средством, действуют следующие принципы:

  1. Быстрая или вертикальная развертка . Все эхо-импульсы, поступившие в приемник, поступают на экран в виде черных полос или точек, которые отстоят от линии поверхности на определенном интервале: он обязательно пропорционален глубине, где был обнаружен отражающий элемент. Это позволяет фактически моментально получать картину происходящего под плавательным судном в текущий момент времени.
  2. Горизонтальная развертка выполняет другие задачи, с ее помощью изображение на экране передвигается в левую сторону, а также происходит отображение координат «глубина-время». Благодаря этому пользователь получает возможность изучить картину происходящего под плавательным средством в уже прошедший период времени.

В соответствии с описанными принципами действия, во время неподвижности плавательного средства, поверхность дна имеет вид горизонтальных полос, а рыбы, от которых отразились импульсы, перемещаются на экране в левую сторону вместе с горизонтальной разверткой.

При начале движения можно наблюдать изменение отображения дна, если меняет текущая глубина. Большинство современных моделей позволяет вручную регулировать скорость развертки и синхронизировать ее со скоростью движения судна, что обеспечивает полную наглядность картины.

Преобразователь (тран-дюсер) эхолота

Преобразователь является важнейшим элементом, входящим в состав эхолота, поскольку именно от него зависят основные рабочие параметры и характеристики. Существуют различные разновидности, но для рыбалки используются в основном только пьезоэлектрические преобразователи, поскольку они занимают небольшое количество места.

Данный элемент выполняет следующие задачи:

  1. Трансформация электрической энергии импульсов с высокой частотностью в ультразвуковые волны.
  2. Обратное преобразование эхо-импульсов, отраженных от подводных объектов, в электрические сигналы.

Основным элементов преобразователя является кристалл, который может быть изготовлен из различных материалов, чаще всего для этих целей используется титанат бария. Он обладает цилиндрической формой и имеет металлизированное покрытие.

Данный элемент убирается в специальный корпус, изготовленный из металла, но обладающий хорошей звукопроводимостью.

Для рыболовных эхолотов применяются различные виды преобразователей, они классифицируются в зависимости от следующих особенностей:

  1. Состав данных, которые данное устройство предоставляет пользователю.
  2. Вид металла, из которого изготавливается корпус.
  3. Число используемых лучей.
  4. Место монтажа устройства на плавательном средстве.

Состав данных

Главной функцией, которую выполняют преобразователи, является получение и передача информации о глубине, на которой находятся различные подводные модели. В корпуса некоторых новых моделей монтируются основные датчики, меняющие получаемых состав данных.

С их помощью можно получить следующие сведения:

  1. Температура воды.
  2. Скорость течения.
  3. Скорость движения плавательного средства.

Материал

Для изготовления преобразователей обычно используются следующие разновидности материалов:

  1. Высокопрочный пластик. Такие модели подходят для монтажа на суднах с корпусом из металла или стеклопластика, их не рекомендуется устанавливать на деревянных поверхностях, поскольку древесина склонна к набуханию под воздействием влаги и способна раздавить преобразователь.
  2. Латунь. Этот металл отличается хорошей прочностью, поэтому установка таких преобразователей может осуществляться на суднах с деревянным корпусом.
  3. Бронза. Такие преобразователи являются универсальными, но рекомендуется воздержаться от их установки на суднах с металлическим корпусом, поскольку в месте соприкосновения может возникнуть электрохимическая реакция, которая приведет к деструкции обеих поверхностей.

Количество лучей

Важным критерием классификации преобразователей является количество используемых лучей, в соответствии с этой особенностью можно выделить 4 основные группы:

  1. Однолучевые преобразователи раньше включилась в устройство всех эхолотов, но сегодня они считаются устаревшим вариантом, который используется все реже.
  2. Двухлучевые преобразователи во время функционирования используют сразу две частоты – 50кГц и 200кГц. Это наиболее распространенный вариант, такие устройства могут работать на одной или сразу на двух частотах.
  3. Трехлучевые преобразователи являются инновационным вариантом, который встречается только в некоторых наиболее современных эхолотах, они необходимо для увеличения зоны просмотра.
  4. Шестилучевые преобразователи не особо распространены и популярны, связано это с высокой стоимостью и недавним появлением на рынке. Они позволяют создавать псевдотрехмерную картину обзора.

Как поймать больше рыбы?

Я уже довольно давно занимаюсь активной рыбалкой и нашел много способов как улучшить клев. И вот самые эффективные:
  1. . Привлекает рыбу в холодной и теплой воде с помощью феромонов, входящих в состав и стимулирует ее аппетит. Жаль, что Росприроднадзор хочет ввести запрет на его продажу.
  2. Более чувствительные снасти. Обзоры и инструкции по другим типам снастей вы можете найти на страницах моего сайта.
  3. Приманки с использованием феромонов.
Остальные секреты успешной рыбалки вы можете получить бесплатно, читая другие мои материалы на сайте.

Место установки

Последним критерием деления преобразователей является место их монтажа, всего существует три способа:

  1. Установка устройства на дне плавательного средства.
  2. Установка устройства на транце.
  3. Установка устройства на внутренней стороне корпуса плавательного средства.

Рабочая частота эхолота

Рабочая частота эхолота является одной из важнейших технических характеристик, поскольку от нее зависят следующие возможности устройства:

  1. Глубина, на которой происходит обнаружение подводных объектов.
  2. Степень детализации обнаруженных объектов при неизменном показателе мощности.

Раньше эхолоты могли использовать только низкие или высокие частоты в зависимости от характеристик конкретной модели, во всех современных моделях имеется возможность одновременного или выборочного задействование частот обоих типов.

Работа на разных частотах имеет следующие особенности:

  1. При работе с высокими частотами изменяется ширина диаграмм , конус начинает сужаться. Это позволяет значительно повысить плотность звуковой энергии, что дает пользователю возможность обнаружения даже маленьких объектов, находящихся на большой глубине.
  2. При переходе на низкую частотность наблюдается пропорциональное расширение конуса , что уменьшает плотность звуковой энергии в нем. Происходит потеря возможности изучения больших глубин или поиска маленьких объектов, но при этом обнаружение рыбы происходит в более широкой зоне.

Влияние среды распространения звуковых волн

Ультразвуковые волны, созданные преобразователем, распространяются в водной среде, которая оказывает значительное влияние на качество работы прибора в целом.

В первую очередь она зависит от следующих характеристик среды:

  1. Затухание энергии ультразвуковых волн в водной среде.
  2. Наличие отражения ультразвуковых волн в одной среде, что позволяет создавать эхо-сигнал.

Затухание энергии

Затухание энергии звуковых волн обусловлено наличием в водной среде большого количества разнообразных органических и минеральных соединений, воздушных пузырьков и микроорганизмов. Все они частично поглощают распространяемые эхолотом сигналы.

Всего выделяется два типа затухания энергии:

  1. Затухание свободного пространства является естественным процессом, который зависит не от специфики среды, а от дальности сигнала.
  2. Затухание энергии по причине повторного прохождения одного и того же расстояния, что происходит при активно гидролокации.

Степень затухания энергии зависит также и от некоторых особенностей среды, основные закономерности заключаются в следующем:

  1. В пресной воде с низкой температурой затухание энергии происходит значительно медленнее, поскольку такая среда отличается повышенной плотностью и меньшей концентрацией различной органики.
  2. В морское воде затухание энергии происходит быстрее из-за высокой концентрации солей. Этот процесс ускоряется при прохождении через верхние водные слои, которые обычно лучше прогреваются и имеют более высокую температуру.

Наличие отражений

Отражения образуются, если звуковая волна встречает какой-либо объект, плотность которого отличается от окружающей среды, в качестве него может выступать:

  1. Рыба или другие подводные обитатели.
  2. Поверхность дна.
  3. Камни.
  4. Подводная растительность.
  5. Крупные пузыри воздуха.
  6. Отдельные слои воды с другой температурой, они называются термоклинами и встречаются в крупных водоемах.

Отражающие свойства дна

Поверхность дна многих крупных водоемов имеет неоднородную структуру, от ее специфики зависят отражающие свойства:

  1. Камни , другие твердые объекты и глиняная поверхность обладают хорошей отражающей способностью, что создает на экране прибора достаточно широкие линии.
  2. Подводная растительность , илистая или песчаная поверхность обладают слабой отражающей способностью, поэтому на экране они создают тонкие линии.

Песок, ил и прочие мягкие поверхность хорошо пропускают ультразвуковые волны через себя, поэтому они могут обеспечивать отображение более твердых масс, располагающихся под ними.

Влияние расположения преобразователя

Местонахождение преобразователя на судне может быть различным, все варианты имеют свои особенности , а также положительные и отрицательные стороны, которые рассматриваются ниже.

Преобразователь с установкой внутри корпуса

Прикрепление преобразователя сигналов к внутренним поверхностям корпуса плавательного средства возможно только, если они изготовлены из однослойного стеклопластика.

Важно соблюдать следующие условия монтажа:

  1. Для обеспечения надежности крепежа и фиксации положения используется эпоксидный клей, который не боится попадания влаги. От применения пластичного герметика необходимо отказаться по причине низких показателей акустической проводимости, что ухудшит функционирование устройства.
  2. Между устройством и водой должна располагаться только основная обшивка без дополнительных вставок, способных задерживать или частично поглощать сигналы.

Данный способ практикуется при монтаже на небольших плавательных средствах с низким показателем скорости передвижения.

Установка на транец имеет следующие особенности:

  1. Монтаж осуществляется на кронштейне , расположенном ниже уровня воды, он находится на транце.
  2. Конструкция должна обеспечивать возможность откидывания преобразователя назад при столкновении с какими-либо объектами, это защитная мера для минимизации риск повреждений.
  3. Главным преимуществом способа является легкость установки , демонтажа и обслуживания в процессе использования.
  4. Единственным существенным недостатком является близость гребных винтов , которые своими движениями способны уменьшить эффективность эхолота.

Преобразователь с установкой на корпусе («Truehull»)

Данный способ подразумевает монтаж устройства через специальное отверстие, вырезанное в поверхности дна плавательного средства.

Основные особенности заключаются в следующем:

  1. Предлагаемый вариант является самым эффективным , поскольку при работе преобразователя не будут создаваться какие-либо помехи, но он предполагает значительные финансовые траты.
  2. Установка таким способом рекомендуется на быстроходных и крупных плавательных средствах , чтобы максимально отдалить преобразователь от гребных винтов.
  3. Преобразователь, установленный на корпусе, должен регулярно очищаться для профилактики обрастания водорослями.
  4. Установка является довольно сложной , возможно потребуется помощь специалистов.

Влияние скорости движения на работу преобразователя

При изменении скорости движения судна в работе преобразователя иногда возникают сбои, приводящие к следующим последствиям:

  1. Возникновение шумовых помех на дисплее.
  2. Исчезновение отражений звуковых волн.
  3. Слабость полученных сигналов.

Основной причиной является непрерывный процесс парообразования, конденсации и лопания паровых пузырьков, что создает дополнительные шумы.

Повышенной чувствительность отличаются устройства, которые были установлены на транец, поскольку им приходится выдерживать тройную нагрузку:

  1. Они сами по себе являются источником кавитации.
  2. Получение шумовой нагрузки с поверхности корпуса плавательного средства.
  3. Поступление пузырьков, созданных при высоких оборотах гребного винта.

Чувствительность эхолота

Под чувствительностью эхолота обычно понимают характеристики, наделяющие его следующими возможностями:

  1. Дифференциация слабых эхо-сигналов от шумов приемник и прочих акустических помех.
  2. Возможность поиска небольших объектов на значительной глубине и их отображения на экране.

Высокая чувствительность позволяет получать больше информации о подводном пространстве, но при работе на незначительной глубине прибор начинает принимать сигналы, находящиеся вне основного луча.

Для удобства использование имеется возможность изменения показателей чувствительности в зависимости от условий среды:

  1. Ручная коррекция чувствительности требовалась при эксплуатации старых моделей эхолотов.
  2. Автоматическое определение оптимальных показателей чувствительности происходит в большинстве современных моделей.

Установка эхолота

Ознакомление с основными принципами функционирования эхолотов позволяет осуществить их правильный монтаж, от которого будет зависеть эффективность устройства. Модели, выпущенные разными производителями, могут иметь индивидуальные особенности установки , хотя различаются они незначительно.

Все нюансы, связанные с этим процессом, обычно указывается в прилагаемой к эхолоту документации.

Ниже будут рассмотрены все основные особенности, связанные с установкой эхолотов на плавательном средстве.

Установка излучателя

Наибольшее значение имеет правильная установка излучателя, поскольку именно от нее будет зависеть качество работы эхолота.

Необходимо учитывать следующие основные правила:

  1. Излучатель должен быть установлен в отдалении от любых неровностей на поверхности днища судна, поскольку они способны создавать завихрения и потоки пузырьков.
  2. Излучатель не допускается устанавливать позади заклепок или отверстий , предназначенных для забора воды.
  3. Излучатель должен быть установлен таким образом , чтобы он работал в спокойном потоке воды, не создающим дополнительные помехи.

Установка преобразователя на транец

Установка подобным способом осуществляется проще всего, осуществить ее сможет любой человек без предварительной подготовки . Монтаж осуществляется на специальный кронштейн с защитным подпружиненным элементом, который ставится на транец. Эта конструкция входит в базовую комплектацию при покупке эхолота.

Установка преобразователя «In Hull» в корпусе

Для этого способа можно приобрести специальную модель или самостоятельно поместить в защитный корпус транцевый преобразователь.

При установке необходимо учитывать следующие особенности:

  1. Большинство небольших плавательных средств с пластиковым корпусом имеют специальные места для монтажа преобразователя такого типа.
  2. Выбранное для монтажа место необходимо проверить на наличие усилителей, которые могут ухудшить функционирование устройства.
  3. Предварительная проверка заключается в наливании в трюм воды , после чего в нее погружается рабочая часть преобразователя. После этого следует проверить показатели глубины, выведенные на дисплей, с реальными значениями: если они полностью совпадают, то выбранное место подходит для установки.

Эксплуатация эхолота

Правила эксплуатации разных моделей эхолотов могут различаться , ниже будут рассмотрены основные правила и особенности, характерные для всех современных устройств.

Информация, отображаемая эхолотом, зависит от функций и возможностей конкретной модели.

Большинство современных приборов предоставляет пользователям следующие сведения:

  1. Глубина места, над которым проходит плавательное средство.
  2. Показатель напряжения источника питания.
  3. Температурный режим водоема, если установлен соответствующий датчик.
  4. Скорость движения плавательного средства при наличии датчика.
  5. Рыба отображается в виде особого значка, некоторые модели имеют возможность звукового оповещения.
  6. Термоклины и пространство под ними.
  7. Рельеф и структура поверхности дна.

Управление эхолотом

Управление эхолотом в зависимости от выбранной модели осуществляется при помощи клавиатуры или экранного меню.

Обычно присутствуют следующие кнопки:

  1. Набор кнопок со стрелками необходим для выбора функций.
  2. Кнопка Enter необходима для перехода в выбранный режим, подтверждения выбора функции или включения панели управления.
  3. Кнопка Setup позволяет войти или выйти из меню настроек.
  4. Кнопка Power позволяет включать и отключать эхолот, а также подключать подсветку.

Шкала глубин (Range)

Шкала глубин необходима для выполнения следующих функций:

  1. Ручная установка показателей глубины участка, о котором необходимо получить информацию.
  2. Автоматическое определение глубины участка, на котором находится судно.
  3. Просмотр информации об интересующем участке.

Масштаб (Zoom)

Данная функция позволяет увеличить и более детально изучить выбранный участок на экране прибора с учетом заданной глубины.

Обычно дисплей при этом делится на части с несколькими окошками:

  1. Первое окно предназначено для осуществления просмотра в стандартном режиме.
  2. Второе окно отображает выбранный пользователем участок с учетом установленного масштаба.

Усиление, чувствительность (Gain)

В статье уже упоминалось о влиянии показателей чувствительности на функционирование эхолота. В большинстве современных моделей этот показатель подбирается устройством в автоматическом режиме, но при этом сохраняется возможность ручной регулировки пользователем.

Для этого через меню настроек необходимо перейти в раздел Gain и откорректировать показатели чувствительности самостоятельно.

Изображение (Chart)

Изменение настроек, связанных с изображением, позволяет скорректировать прокрутку, что скажется на скорости обновления информации на дисплее прибора.

Для этого в меню Chart потребуется найти функцию Scroll Speed, для которой можно задать следующие значения:

  1. Fast – быстрая прокрутка.
  2. Medium – прокрутка со средней скоростью.
  3. Slow – медленная прокрутка.

Частота (Frequency)

Функция Frequency позволяет задать один из следующих режимов работы приспособления:

  1. Высокая частотность с показателем 200 кГц является режимом, который включен на большинстве моделей по умолчанию.
  2. Режим использования низких частот 50 кГц.
  3. Комбинированный режим , позволяющий одновременно задействовать волны с низкой и высокой частотностью.

Символы рыбы (FishSymbols)

В соответствующем меню можно отрегулировать особенности отображения рыб, которые могут осуществлять следующим способом:

  1. Значение Off выключает режим отображения рыб, в таком случае они будут представлены в виде полос, как и другие отраженные объекты.
  2. Значение On включает режим отображения рыб, в отличие от других отраженных объектов, они будут обозначены специальным значком.
  3. Возможность отображения рыб значками разного цвета при работе эхолота в двухчастотном режиме. Это позволяет понять, был они облучены узким или широким лучом.

Белая линия (Whiteline)

Данная функция позволяет разными способами отображать поверхность дна водоема:

  1. При выключенном режиме дно отображается в виде равномерно закрашенного черного участка без детализации структуры.
  2. При включенном режиме дно закрашивается различными оттенками, что отображает его структуру и строение.

Инструменты (Tools)

В меню Tools обычно включается 4 набора инструментов, которыми можно воспользоваться:

  1. Depth Line позволяет воспользоваться «линией глубины», при помощи которого можно определить глубины до интересующего подводного объекта или осуществить его выбор.
  2. Flasher представляет собой луч, позволяющий создавать изображение на вертикальной полосе, что способствует повышенной детализации водных толщ и структуры дна.
  3. Noise Reject является инструментом для шумоподавления, с его помощью полученное изображение может быть очищено от нежелательных помех.
  4. Simulator представляет собой инструмент для обучения пользования эхолотом и проведения тестирования его основных функций.

Сигнализация об обнаружении рыбы (Alarm)

Возможностью подачи звукового сигнала об обнаружении рыбы, наделены многие современные модели эхолотов.

Эта функция обладает следующими особенностями:

  1. Сигнализация продолжает работать при отключении режима FishSymbols.
  2. Сигнализация может быть настроена для подачи сигнала при обнаружении рыб определенного размера.

Изображение на экране эхолота

Чтобы не испытать разочарование от применения эхолота на практике требуется хорошо понимать принципу его функционирования и не ждать получения информации, которую прибор не может предоставить. В соответствии с механизмами, на которых строится работа прибора, он способен измерять лишь одну координату – глубину водоема .

По этой причине эхолот не способен обеспечивать демонстрацию пространственной картины в рамках конуса излучения. Также он не сможет определить, где в рамках исследованного пространства находится рыба, водоросли или иные объекты, а лишь проинформирует об их нахождении на единой глубине.

Определение типа дна эхолотом

Все современные эхолоты могут идентифицировать тип поверхности дна в зависимости от того, покрыт он твердым грунтом, песком, илом или водорослями. Связано это с разной отражающей способностью подводных объектов, для улучшения детализации и более точного определения типа дна рекомендуется включить функцию «Белая линия» .

Определение рыбы эхолотом

Правильной установленный на судне преобразователь будет передавать информацию об обнаруженной рыбе, на экране прибора она отображается в виде дуг, что связано с постоянным изменением расстояния до нее.

При этом необходимо учитывать следующие особенности:

  1. При увеличении ширины конуса дуги, отображающие рыбу, станут более выраженными.
  2. При приближении к оси конуса расстояние уменьшится, что сразу отобразится на дисплее прибора.
  3. При прохождении оси расстояние, наоборот, увеличится, поэтому дуги будут отображены на движущейся развертке.
  4. При вхождении в конус мощность на краях диаграммы понизится, из-за чего изображение станет тоньше.
  5. При прохождении по краю конуса рыба может вообще не отобразиться на дисплее.

У некоторых моделей имеется возможность подключения дополнительных датчиков, позволяющих находить рыбы не только под судном, но и обеим его сторонам.

Эхолот для рыболова

Основная функция эхолота заключается в поиске рыбы, но обнаружить ее без учета других факторов невозможно. Связано это с ее локализацией в отдельных участках водоема, а не равномерным распределением.

По этой причине эхолоты также используются и для изучения структуры дна , что позволяет выявить наиболее перспективные для рыбалки места, в которых рыба может прятаться, ночевать или охотиться.

Эхолот не только измеряет, но и запоминает глубину до определенных точек каждый определенный промежуток времени. Анализ этой информации позволяет ему определять и отображать на экране рельеф поверхности дна и его основные изменения.

Отображение изменений рельефа происходит в виде линии, если же судно неподвижно, то она является прямой, поскольку глубина до точек не меняется.

В зависимости от глубины водоема рыболову следует обращать внимание на следующие перспективные участки:

  1. Подводные ямы, крупные впадины.
  2. Песчаные косы.
  3. Гребни и перекаты.
  4. Каменистые «банки».
  5. Ровные площадки, если в остальных местах поверхность слишком неоднородна.

Отображение рыбы

Как уже упоминалось, обнаруженная рыба отображается в виде дуг, их размер зависит от следующих факторов:

  1. Скорость движения рыбы относительно плавательного средства.
  2. Ширина конуса излучения.

Учитывая эти особенности, необходимо особенно аккуратно искать рыбы при движении на больших скоростях. Появление на экране незначительных дуг свидетельствует о том, что скорость необходимо уменьшить и пройти этот участок водоема еще раз.

Символ, обозначающий рыбы, обычно окрашивается в белый или черный цвет в зависимости от того, при помощи какого луча она была обнаружена.

Масштабирование

Масштабирование выполняется при помощи функции Zoom, что позволяет в 2-4 раза увеличить участки водоема с выбранной глубиной. Одновременное отображение в полномасштабном и увеличенном режиме позволяет комфортно изучать подводные заросли или места возле подводных препятствий.

Примеры диаграмм

Для обеспечения наглядности и полного понимания, какими возможностями обладают эхолот, рекомендуется ознакомиться с примерами диаграмм, созданными монохромными и жидкокристаллическими устройствами.

На них можно увидеть:

  1. Поверхностные помехи, отмеченные в верхней части экрана и опускающиеся вниз.
  2. Выделенный контур поверхности дна.
  3. Структура, выделяющая объекты, расположенные над дном и не являющиеся его частью.
  4. Дуги, обозначающие найденную рыбу.
  5. Другие большие или частичные дуги, не являющиеся рыбой.

Как не допустить ошибок, пользуясь эхолотом?

Все основные ошибки при эксплуатации эхолотов связаны с неправильным представлением о принципах их работы и отображения информация.

Для того чтобы не допускать различных промахов необходимо учитывать следующие нюансы:

  1. Прибор отображает не локальный участок водоема под судном , а гораздо более обширную его часть, поскольку излучения распространяются в разные стороны. Но на дисплее отображение происходит лишь в одной плоскости.
  2. Эхолоты не отображают пространственные образы рыбы относительно плавательного средства. Проекция осуществляется вертикальную плоскость, проходящую через центральную ось конуса.
  3. Между противоположными границами в поле лучей может оказаться посторонний объект , являющийся частью поверхности дна. На экране это будет отмечено в виде заштрихованной области, а рыбу, находящуюся в этой зоне, не удастся обнаружить. Однако она может быть замечена узким лучом, который не захватывает мешающийся объект.

Как работает эхолот «Практик»?

Эхолоты «Практик» являются популярным приспособлениями, поскольку они отличаются относительно низкой ценой при наличии большого количества функций.

С его помощью рыболов может выполнять следующие задачи:

  1. Подключить звуковое оповещение при обнаружении рыбы в зависимости от ее размеров.
  2. Вручную регулировать показатели глубины .
  3. Увеличивать пространство в трех разных режимах .
  4. Устанавливать зимний или летний режим функционирования.
  5. Регулировать частоту обновлений сведений на дисплее.
  6. Осуществлять калибровку датчика для улучшения функционирования на определенных участках водоема.
  7. Настраивать фильтр помех.
  8. Определять глухую зону.
  9. Получать информацию в разных формах в зависимости от выбранного режима, в том числе и предназначенного для профессионалов.

Давно вы имели по-настоящему КРУПНЫЙ УЛОВ?

Когда последний раз ловили десятки ЗДОРОВЕННЫХ щук/карпов/лещей?

Нам всегда хочется получать результат от рыбалки – поймать не три окунька, а десяток килограммовых щук – вот это будет улов! Каждый из нас мечтает о таком, но далеко не каждый умеет.

Хорошего улова можно достичь (и мы это с вами знаем) благодаря хорошей прикормке.

Ее можно приготовить в домашних условиях, можно купить в рыбацких магазинах. Но в магазинах дорого, а чтобы приготовить прикормку дома, нужно потратить уйму времени, да и, по праве говоря, далеко не всегда домашняя прикормка хорошо работает.

Вам знакомо то разочарование, когда вы купили прикормку или приготовили ее дома, а поймали три-четыре окунька?

Так может быть пора воспользоваться действительно рабочим продуктом, эффективность которого доказана как научно, так и практикой на реках и прудах России?

Дает тот самый результат, который мы не можем достичь сами, тем более, стоит она дешево, что отличает от других средств и времени тратить на изготовление не нужно – заказал, привезли и вперед!


Конечно, лучше один раз попробовать, чем тысячу раз услышать. Тем более сейчас – самый сезон! при заказе это отличный бонус!

Узнайте подробнее про приманку!

Статья про пользование эхолотом, на может оказаться для кого-то полезной. Статья написана американским профессиональным рыболовным гидом Джоэлом Тинкером (Joel Tinker). В ней нет ни формул, ни физики, лишь самые базовые вопросы пользования элементарным эхолотом с чёрно-белым дисплеем.

Кое в чём автор опровергает стандартные рекомендации производителей эхолотов, которые содержатся в инструкциях для пользователей. Это касается представления плотности дна на экране. Нет оснований ему не доверять. Я давно усвоил, что американские рыболовные профи, зарабатывающие на жизнь тем, что вывозят на своих чартерах людей на рыбалку, основательно знают ремесло. Из их статей понимаешь, что рыбу "на авось" они не ловят. Это не рыболовы выходного дня! Поражает внимание к мелочам и дотошность во всём. Это и понятно: люди им платят деньги не за то, что на катере по озеру покатают, а за то, что на точку выведут, где рыбу в данный момент можно поймать, покажут, как это нужно делать. Итак, пишет Джоэл Тинкер.

Годами я имел удовольствие рыбачить в одной лодке со знающими рыболовами. Может быть, кто-то из них у меня кое-чему научился, я тоже научился у продвинутых рыболовов многому. Но я часто обращал внимание на то, насколько плохо пользуются своими эхолотами не только новички, а подчас даже очень опытные рыболовы. Люди не понимают картинку на экране, не понимают саму физику работы прибора, не могут сложить всё это вместе и воспринять информацию, которую эхолот пытается до них довести. Сам я задавал очень много вопросов по эхолотам дилерам фирм и инженерам. Дилеры, хотя и торгуют успешно эхолотами, разбираются в них, нужно сказать, слабенько. А вот от инженеров я получал очень ценную информацию. Во-первых, не все эхолоты будут показывать одно и то же в одних и тех же условиях. Даже если это разные модели от одного и того же производителя. Важно понять и изучить свой эхолот , тот, который у вас в пользовании. Поверьте, если вы будете постоянно менять эхолоты, может случиться так, что вы так и не освоите ни один из них по-настоящему.
Ещё одно предварительное замечание: я всегда находил специалистов, которые знали ответы на мои вопросы. Их ответы были чёткими, ясными и правильными. Единственная тема, где меня сбивали с толку - это интерпретация градаций оттенков серого для определения плотности дна. Но об этом дальше... Если рыболов правильно понимает сам принцип эхолокации, он лучше понимает смысл картинки на дисплее. Давайте на простых примерах проверим ваше понимание работы эхолота.

1. Как понимать изображение №1?
а) вы заякорились на склоне.
б) вы заякорились на ровном месте.

2. Как понимать изображение на дисплее №2, если ваша лодка плывёт по прямой?
а) вы движетесь по прямой, под вами плоское дно.
б) вы движетесь вдоль прямого склона.

3. Как понимать экран №3, если ваша лодка движется?
а) вы проходите подводные бугры.
б) вы движетесь вдоль склона.

4. Что на экране №4?

А) вы стоите над склоном.
б) вы движетесь по склону, глубина уменьшается.
5. Что показывает экран №5?
а) вы только что прошли над бугром.
б) ваша лодка поменяла курс.
в) вы движетесь над склоном.

Если есть какие-то сомнения относительно ответов, то вам стоит продолжить чтение этой статьи. Чтобы правильно читать информацию о рельефе дна, которую вам даёт эхолот, вы должны воспринимать картинку на экране как график, на котором представлены результаты последовательных измерений глубины. Выплывающие справа на экран точки, это самые последние измерения. Чем дальше влево по экрану, тем более ранние результаты измерений. Подъемы и понижения линии дна на экране отражают изменение глубины под лодкой. Сколько бы это ни объяснялось, многие упорно смотрят на монитор эхолота, как на экран телевизора. Но эхолот не показывает, как выглядит дно, он показывает, как оно менялось. Итак, это мы поняли. Теперь вернёмся к нашим вопросам.

Ответ на вопрос №1 может быть правильным и «а» и «б», потому что, если вы стоите на месте, каков бы ни был под вами рельеф значения это не имеет, поскольку глубина от измерения к измерению остаётся одна и та же. Это и представляется прямой линией на дисплее, что некоторыми воспринимается, как плоское дно.
С вопросом №2 тоже понятно: или вы будете двигаться над плоским дном, или вы будете идти вдоль ровного свала - если глубина подлодкой не меняется, то и показания будут одинаковыми. Оба ответа могут быть верны.
Экран №3 можно прочитать и так, что вы проходите над грядой бугров, итак, что ваша лодка рыскает на ходу вдоль крутого склона. Чтобы избавиться от этой неопределённости, вам придётся немного изменить курс и всё станет ясно.
Очень много времени на водоёме уходит именно на то, чтобы разобраться - что именно показывает эхолот. Я никогда не жалею на это времени. Время, потраченное на изучение водоёма, это очень ценная инвестиция, которая принесёт вам дивиденды в виде детального знания подводного рельефа. Ответ на вопрос №4 уже частично ясен из предыдущего: где бы ни стояла лодка, на эхолоте будет прямая линия. Правильный ответ - «б».
Такая картинка, как на рисунке №5, может появиться на экране эхолота в нескольких случаях. Многие рыболовы такую картинку воспринимают только как подводный бугор. Но это не обязательно так. Картинка говорит лишь о том, что лодка перемещалась с более глубокого места на более мелкое, а затем с более мелкого на более глубокое. Только пройдя такое место с разных направлении, можно сказать, что там на самом деле за рельеф. Излучаемый датчиком эхолота сигнал - это импульс акустических колебаний, распространяющийся в глубину расширяющимся конусом. Если вы стоите над крутым свалом дна (рис. А) какую глубину определит эхолот: 25 футов или 37 футов?

На экране будет цифра "25". Тем не менее, эхолот показывает (или пытается показать), что там перепад глубин от 25 до 37 футов, но нужно быть очень опытным пользователем, чтобы понять это. Большинство рыболовов увидят линию дна на 25 футах, продублированную цифровым показанием "25" и вполне этим удовлетворятся. Может быть, там и рыба стоит чуть пониже 25 футов, но они её не увидят, она окажется в "донном грунте" (см. рис. Б).

Определение плотности дна - это и самая ненадёжная тема в обращении с эхолотом. Все дилеры и инженеры, с которыми я обсуждал этот вопрос, дружно объясняли мне, что чем темнее линия дна на экране, тем твёрже дно. Однако я выяснил на практике, что это не всегда так. В некоторых местах всё было с точностью да наоборот. Я очень часто пробую дно тяжёлым джигом.
Это простой, точный и хороший метод. Всё хорошо, но время от времени получается, что чувствуешь твёрдое дно, но со временем ты понимаешь, что джиг пробивает сначала несколько дюймов тонкого ила, прежде чем коснуться действительно твёрдого дна. Так вот, этот тонкий слой ила иногда на экране рисуется чёткой жирной полосой, общая картина получается такая, что дно плотное и чистое, хотя это не так. Не знаю, почему эхолоты иногда так ошибаются, но если это твой эхолот, он ошибается всегда одинаково и ты со временем узнаёшь, как понимать любую его картинку.
Я знаю места, где дно – плотный песок, но по эхолоту этого никогда не скажешь. Он почему-то рисует рыхлую светло-серую полосу. Знаю и другие места, где три фута ила, а он рисует жирную тёмную черту. Нет того постоянства представления плотности грунта на экране, на которое рыболов рассчитывает. Всё это я наблюдал на разных эхолотах от разных производителей. Должен сказать, что все они так или иначе перевирают информацию о плотности грунта.

При ловле маски очень важно найти место, где один тип дна граничит с другим. Маска привязана к таким местам. Ориентируясь на градации серого в изображении дна на экране, такие границы найти вряд ли удастся. Проще их искать, следя за изменением обычной линии дна. При переходе границ всегда будет уступ, его и надо держаться. Давайте рассмотрим некоторые показания эхолота, характерные для смены характера дна.


Экран №6 показывает, как должен выглядеть переход от плотного дна к мягкому. Это по книжке. В жизни переход будет виден, но для того, чтобы определить, где там реально твёрдое дно, а где мягкое, лучше взять тяжёлый джиг и пробросать это место. Заодно, отложив в сторону джиг, полезно запомнить картинку, связав её в своей памяти с реальным характером дна под лодкой. Пригодится.
Экран №7 показывает картинку, с которой приходится встречаться очень часто. С изменением плотности дна меняется не оттенок серого цвета, а скорее, будет изменяться похожий на флуктуационный шум сигнал пониже серой линии дна. Если этот шум уходит ниже, значит дно становится твёрже. Никогда не видел, чтобы было наоборот. Но видел другое - полоса этих рассеянных, как бы шумовых, точек становилась шире, но плотность дна на самом деле не менялась. Тут снова нужно браться за старый добрый джиг и прощупывать дно.

Для определения изменения плотности дна можно применить и такой искусственный приём: установить высокий уровень сигнала и следить за тем, как меняется "второе дно" - эхо от двукратного отражения сигнала. Над твёрдым дном второе отражение будет всегда более сильным. (Экран №8). Но мне этот метод не нравится. Что ни говори, а картина на дисплее рисуется искажённая. При завышенном уровне сигнала на экране слишком много шума и лишних деталей, из-за этого трудно рассмотреть мелкую рыбку. А я, когда охочусь на маски, хочу держаться поблизости тех мест, где плавает кормная рыба. Итак, на эхолот не стоит особо полагаться в плане определения плотности дна. Но, сопоставляя показания прибора с тем, что выявило обследование дна джигом, вы можете изучить свой водоём досконально. Вы будете знать не только глубины, но и структуру дна в разных местах. А в совокупности знание этих параметров даст вам возможность уверенно находить рыбу.

Справка: 1 фут - 0.3 метра, 1 дюйм - 0.02 метра

Чтобы это понять, нужно вначале разобраться, что же это такое и зачем он нужен. Прежде всего — это прибор, использующий ультразвуковые излучения для получения информации о характере дна водоема. В конструкции устройства имеется излучатель и приемник излучения.

Поскольку в работе прибора используются высокочастотные излучения, он способен различать и движущиеся предметы (рыбу) и показывать ее на экране в режиме реального времени. То есть, пользователь может визуально наблюдать действительную жизнь подводного мира и согласовывать свои действия с реальной обстановкой.

Что собой представляет эхолот для рыбалки

1. Как это работает

Они же сонары, разработаны примерно в сороковых годах прошлого столетия для обнаружения подлодок.

Первые сонары для спортивного рыболовства появились в 1957г. Основными узлами прибора являются:

  1. Передающее устройство – генерирует сигнал как электрические импульсы и подает его на датчик.
  2. Датчик – преобразует полученный сигнал в звуковые излучения.
  3. Приемник возвратного сигнала – улавливает отраженный от подводных предметов сигнал, в соответствии с задержкой времени возврата звуковой волны определяется расстояние до точки отражения и, таким образом, формируется картинка рельефа дна и места нахождения перемещающихся объектов (рыбы). Излучение безвредно и не ощущается живыми существами.
  4. Дисплей – отражает картинку невидимого под водой пространства в режиме реального времени.

2. Доступные операции и характеристики

  1. Чувствительность. Функция руководит способностью изделия к приему сигналов. При необходимости рассмотреть подробности нужно плавно повышать уровень чувствительности до достижения нужного результата. Когда экран показывает большое количество помех, нужно понизить чувствительность до получения четких отражений «дужек рыб», если таковая там присутствует. Величину чувствительности можно изменять как на ручном управлении, так и при включенной автоматике этой функции. Методики подстройки на обоих режимах идентичны, а итоговые эффекты различны. Авторежим позволит нарастить чувствительность до предела, а вот снизить ее удастся только до уровня, когда различается рельеф дна. На ручном режиме можно настроить прибор до экстремальных значений в обе стороны, различать рельеф дна можно примерно от уровня 50% чувствительности.
  2. ASP – функция представляет собой устройство, позволяющее фильтровать помехи различного происхождения. Оно постоянно анализирует скоростной режим плавсредства, световые интерференционные эффекты, и на автомате фильтрует сигналы различного характера, устраняя помехи. В терминах сонаров любые посторонние эффекты называются «шум». Шумы могут иметь самое различное происхождения, например звук работающего двигателя, работу устройства зажигания. ASP имеет четыре настройки режимов работы: OFF – выключено, LOW – для низкого уровня, MEDIUM – для помех среднего уровня, HIGH – для высокого. При наличии сильных помех лучше использовать режим HIGH, однако наиболее эффективно – найти место происхождения помех и устранить причину их возникновения.
  3. ALARM – сигналы предупреждения. В конструкции заложены три вида таких сигналов: «Рыба» — FICH ALARM, срабатывает, когда приемник определяет совокупность сигналов как рыбу, следующий сигнал (ZONE ALARM) раздается во время перемещения в это место, и сигнал, предупреждающий о глубине, реагируя на приближении к отмели (Shallow), а также указывает глубину в месте расположения. Предупреждение срабатывает только от прибора наблюдения за дном водоема.
  4. CHART SPEED – настройка скорости, с которой происходит обновление отображения на мониторе. Изначально этот показатель настраивается на максимальное значение. Во время стоянки лодки или при медленном дрейфе можно поменять установку на 50%, это действие позволяет улучшить качество изображения. При стабильном расположении на максимальных настройках проплывающие мимо рыбы будут обозначаться длинными горизонтальными линиями, при уменьшении скорости прокрутки эти линии станут короче.
  5. DEPT CURSOR — курсор, указывающий глубину. Показан на дисплее черточкой с цифрами в окошке. При перемещении его можно получить данные о глубине расположения предмета.
  6. FICH ID – идентификатор рыбы, компьютер рассматривает определенную совокупность отражений как рыбу. При этом он различает размер рыбы как мелкую, среднюю или крупную. Соответственно на экране появляется символическое изображение рыбки соответствующего размера. Нужно отметить, что в качестве рыбы бывает интерпретирована совокупность сигналов от любых плавающих предметов (ветки, водная растительность, водяные пузыри). Там, где сонар «обнаруживает» рыбу, ее может не быть и наоборот. Здесь может помочь только опыт рыболова и понимания основных законов подводного мира. А эхолот является лишь помощником на рыбалке.
  7. FichReveal – режим выделяет из всех сигналов только определяющий рыб, используя при этом «серую шкалу». Это означает то, что сигналы послабее обозначаются белым цветом, а сильные – черным. В градации порядка десятка серых оттенков. При настройке прибора настоятельно рекомендуется отключение автоматики и настройки чувствительности до максимума.
  8. GREENLINE – «серая полоса». Эта настройка позволяет отличать слабые сигналы от более интенсивных. Таким образом, можно отличить каменистое дно от илистого, которое дает размытый нечеткий абрис профиля дна, твердое дно выглядит как четкая широкая линия.

Разновидности эхолотов по лучевым показателям

Однолучевые. Сонары, которые излучают один поисковый луч. Работают до глубины 30 – 32 метра, угол расширения луча составляет в большинстве моделей 24 о. Некоторые модели комплектуются излучателями до 90 о.

Двухлучевые. Эти эхолоты имеют угол охвата порядка 60 о от оси первого (узкого) луча. Рыба, попадающая в зону действия узкого луча, высвечивается на экране светлыми значками, а находящаяся во втором луче – темными. Глубина обследования может составлять до 70 метров.


Многолучевые. Приборы могут иметь угол охвата до 90 о. Средний луч дает четкую картину дна водоема на глубине до 35 метров, а другие лучи показывают картинку по ходу движения лодки и за ее кормой. Четко отображается наличие рыбы по левому и правому бортам судна в движении.


Эхолоты 3D. Это семейство сонаров, оснащенных шестью излучателями и способные давать объемное изображение рыб и рельефа дна на специальном экране путем определяя расстояния до объектов. Применяемая шестилучевая система сканирования уникальна.


Эхолоты, смотрящие вперед. Эти приборы оснащены боковым излучателем, отслеживающим обстановку по ходу движения судна. Обзор увеличивается до угла 180 о, эффективно обнаруживая мели и другие препятствия на пути.


Беспроводные сонары. Излучатель прикрепляется к леске и забрасывается в нужное место. Связь с дисплеем осуществляется по беспроводному принципу. Работает на удалении до 320 метров.

Варианты использования сонаров

Для успешной рыбалки очень важно иметь представление о характере профиля дна. Известно, что рыба кормится на скатах, уклонах. Влияние оказывает угол подхода течения к неровностям дна. Пищевые субстраты, следуя за течением, оседают в более спокойной воде за увалом, и рыба это знает, не мешает знать и рыбаку. А поможет найти «клеевое место» именно эхолот.

1. Применение сонаров при ловле с берега

Здесь нам пригодиться , который можно забросить на расстояние при помощи обыкновенного удилища.

Осмотрев топографию дна при помощи сонара и определив теоретически перспективные места, можно приступать к рыбалке:

  1. Вносим на место ловли прикормку. Ее назначение – создать пищевой след, по которому рыба придет к этому месту. Нужно помнить главное – назначение прикормки не кормить рыбу, а привлекать ее к месту лова.
  2. Эхолот поможет определить, в какой форме ее вносить, если перед нами крутой уклон, то вносить прикормку нужно «блинами», а не круглыми комками, что более привычно.
  3. Контролируем действенность прикормки – через небольшое время она должна здесь появиться и, если все остальное было сделано правильно, скоро это проявится в активном клеве.

Нужно только заметить, что эхолот – не панацея, он поможет правильно сориентироваться, но не обеспечит успех рыбалки. Слишком много в этом деле других факторов, влияющих на конечный результат.

2. Применение сонаров при ловле с лодки

Прежде всего, следует заметить несомненную пользу эхолота при перемещении по водоему, особенно по незнакомому. Он дает возможность не только изучить топографию дна для выбора перспективного места ловли, но и предупредит о возникновении препятствий для передвижения.

Одной из основных проблем при использовании – найти правильное место его установки, чтобы работе сонара не препятствовали кавитационные потоки пузырьков воздуха. Поэтому для начала предпочтительно соорудить временное крепление и путем проб и ошибок найти для него наилучшее место на борту судна.

Обычное место крепления – транец. В остальном же применение сонара на рыбалке преследует те же цели и задачи, что и при ловле с берега.

Как увеличить улов рыбы?

За 7 лет активного увлечения рыбалкой мною найдены десятки способов улучшить клев. Приведу самые эффективные:

  1. Активатор клева . Эта феромоновая добавка сильнее всех приманивает рыбу в холодной и теплой воде. Обсуждение активатора клева «Голодная рыба» .
  2. Повышение чувствительности снасти. Читайте соответствующие руководства по конкретному типу снасти.
  3. Приманки на основе феромонов .

Как настроить эхолот

Уже только задумавшись о приобретении прибора, будущий пользователь задается вопросом о том, как его настроить для максимально эффективной работы. Продавец–консультант даст ожидаемый ответ – прибор настроен в оптимальном режиме и дополнительных настроек не требуется.

Вместе с тем:

  1. При первом включении устанавливаются оптимальные настройки функций определения рельефа дна и поиска рыбы. Нужно обратить внимание, что значения выражаются в футах, и включается функция определения вида обнаруженных рыб.
  2. Для внесения изменений в настройки нужно зайти в меню прибора и произвести необходимые поправки. Помните, что внесенные поправки сохраняются при выключении прибора, значит, при следующем включении они возобновятся в том виде, в котором были внесены. Для начинающих пользователей наиболее понятен режим идентификации, опытные предпочитают изменять его, поскольку этот режим может быть недостаточно информативным.
  3. Наиболее частым изменениям обычно подвергается настройка изображения с целью узнать максимальные возможности прибора. Для достижения результата можно попробовать включение многоэкранного режима, либо нарастить просмотр изображений, «поиграть» в обе стороны с настройкой чувствительности или поменять диапазон глубин. Чем шире диапазон, тем более четкие изображения рельефа дна будут получены на экране.
  4. При понижении чувствительности изменяется ширина луча, ищущего рыбу. Для обнаружения рыбных мест можно уменьшить диапазон и он будет более точно их определять. Главное не перестараться, иначе прибор не увидит не только мелкую рыбу, но среднюю.
  5. Опытный рыболов применяет более «навороченные» варианты сонаров с расширенными возможностями настроек. Простого изменения чувствительности недостаточно, нужно иметь возможность регулировки ищущего луча и соответственно подстраивать диаграмму стандартного датчика.
  6. Главное, перед началом применения внимательно ознакомиться с инструкцией по эксплуатации и правильно настроить эхолот, учитывая его конструктивные особенности.

Как разобрать данные на дисплее эхолота

Принцип действия сонара уже был рассмотрен выше, и он заключается в оценке времени прохождения звукового луча до препятствия и времени возврата отраженного луча к приемнику. Таким образом, компьютер прибора создает на дисплее профиль дна, определяет плотность грунта (твердый или илистые отложения), различает движущиеся в толще воды предметы и, в соответствии с заложенной в него программе, определяет их принадлежность, а сложные приборы определяют даже вид рыб и показывает их условное изображение.

На вертикальном столбце в левой части экрана отображаются глубины расположения подводных объектов. В некоторых приборах эту информацию можно получить нажатием на соответствующий курсор, более совершенные показывают данные в окошечке курсора постоянно.

Вся информация о правилах считывания данных с экрана эхолота подробно описана в инструкции, с этим разделом нужно ознакомиться особенно внимательно, поскольку у каждого прибора имеются свои особенности.

Эхолоты для зимней рыблки

Эти приборы имеют ряд особенностей, связанных с условиями эксплуатации. Для таких изделий применяются специальные теплосберегающие корпуса. Для обеспечения питания на морозе применяются более емкие аккумуляторы, часто не встроенные, а выносные в соответственно утепленной упаковке.

Это позволяет использовать эхолоты в течение довольно длительного времени при температуре от -15 о С и ниже. Никаких особенностей в считывании информации с дисплея не существует. Кстати, на зимних сонарах не применяются жидкокристаллические экраны и используются специальные датчики.

  1. Эхолот способен превратить рыбалку в праздник, сделав ее азартной, увлекательной и результативной. Но нужно понять, что этот прибор не является волшебной палочкой. Нужно непременно знать повадки рыб, типичные места их обитания, предпочтения в питании. Тогда сонар станет неоценимым помощником.
  2. Необходимо помнить, что эхолот показывает не текущую картинку, а ту, что была несколько мгновений назад и в соответствии с этим согласовывать свои действия.

Рыбалка считается популярным видом отдыха для многих людей. Это не только хобби, активное провождение времени, но и настоящий спорт. Успешный рыболов обязан обладать соответствующими навыками и знаниями, постоянно покорять новые водоемы, совершенствуя себя и свою технику, а также уметь пользоваться современным оборудованием. Среди самых нужных для рыбака приборов находится эхолот. Еще одно его название - сонатор.

Особенности эхолота

Эхолот является незаменимым приспособлением для новичков и настоящих асов рыбалки. Он обладает несколькими функциями:
  • определение рельефа дна и подводных объектов;
  • исследование состояния воды;
  • нахождение скопления рыб;
  • измерение глубины водоема.

Чтобы понять, как пользоваться эхолотом, необходимо понять принцип его действия. Устройство получает информацию о различных объектах путем отправления звуковых импульсов. Те, в свою очередь, отражаясь от предметов, снабжают прибор ценными сведениями. Некоторые дорогостоящие модели обладают и дополнительными возможностями. К примеру, они могут легко определить вид той или иной рыбы под водой, сообщить о температуре водоема и так далее.

Принципы применения сонатора в лодке


Подобрав для себя подходящий прибор, рыболов должен ознакомиться с особенностями его функционирования и имеющимися способностями, чтобы вникнуть, как пользоваться эхолотом. Если глубина реки или озера небольшая, то целесообразной считается частота излучения равная 192 герцам. Лучи должны быть узкими, находящимися в диапазоне от 20 до 24 градусов.

Лодку следует двигать вперед очень аккуратно и медленно, ведь тогда картинка на экране приспособления будет более точной и четкой. Предметы, расположенные под судном, видны с правой стороны устройства. Изгибы дна отображаются в его нижнем краю.

Опытным рыбакам известно, что изображение не всегда соответствует действительности, так как оно показывает сведения с некоторым опозданием, а не в реальном времени. Информация, находящаяся в левой части, получена раньше, нежели с правой стороны. Поэтому, выбрав место для остановки лодки, ее нужно будет вернуть чуть назад.

Применение прибора с берега

Как пользоваться эхолотом, расположившись на твердой земле? Очень просто. Для этой цели следует приобрести специальный сонатор, обладающий беспроводным сканером. Подобное приспособление отлично подойдет для изучения водоема с берега.

Устройство необходимо будет хорошо прикрепить к леске и закинуть ее в воду. Затем следует с медленной скоростью тянуть оборудование в свою сторону, внимательно наблюдая за картинкой на экране. Так как на проекции будут видны лишь те объекты, которые попали в луч сонатора, придется забрасывать удочку несколько раз. Тогда беспроводной эхолот покажет больше сведений.

Отличия беспроводного прибора

В составе такого приспособления имеется только монитор и локатор. Его отличие состоит в отсутствии соединяющего блоки кабеля. Его работа подразумевает сканирование окружающей местности посредством эхолокации. Информация, полученная блок-локатором, будет превращаться в радиоволны, а потом поступать в центральную часть устройства.

В главном блоке пришедшие сигналы трансформируются в картинку на мониторе. При этом составные элементы сонатора обладают отдельными источниками питания. Беспроводной эхолот имеет полностью герметичный корпус. Он снабжен удобной крепежной частью для шнура или рыболовной лески, а также отличается плюсовой плавучестью.

Сонатор Garmin

В специализированный центрах продаж можно найти оборудование от всевозможных производителей. Одним из наиболее известных и проверенных изготовителей считается "Гармин".

Эхолот Garmin обладает ощутимыми преимуществами:

  • широчайший модельный ряд;
  • внушительный ценовой диапазон;
  • простое пользование;
  • завидная надежность;
  • хорошая эффективность;
  • прекрасное качество.

Модели, предназначенные для зимней рыбалки, с легкостью получают важную информацию даже сквозь толщу льда, существенно увеличивая улов. Приспособление обладает особым датчиком, которые испускает акустические волны. Под водой они наталкиваются на барьеры, тут же возвращаясь назад. Эхолот Garmin сообщает рыболову данные о расстоянии, прошедшем волной, затраченном времени и объектах, повстречавшихся на пути.

Секреты успешной рыбалки

Чтобы успешно пользоваться устройством, прилагается инструкция к эхолоту. Для максимального увеличения улова стоит применить свои настройки. Для этого:

  1. Не нужно бояться проводить эксперименты.
  2. Следует лично задать глубину, на которой предполагается рыбачить.
  3. Необходимо установить очищение изображения и шумоподавление для получения лучшей картинки.
  4. У цветных моделей стоит подкорректировать данные экрана.
  5. Можно определить уровень чувствительности. Рекомендуется остановиться на 75 процентах.

Если рыбопоисковый эхолот предполагается применять в зимнее время, то профессионалы советуют поберечь от Для этого делают специальный ящик из пенопласта либо теплую сумку. При данном виде рыбалки актуальны лишь два способа использования прибора: вмораживание в лед или помещение сонатора в изготовленную лунку. Каждый из них создает некоторые трудности - либо отковыривать прибор от замерзшей воды, либо мастерить для него удобный и надежный держатель. Также не следует зимой слишком полагаться на функцию оборудования по распознаванию рыбы. В условиях холода она будет не слишком эффективной.

Таким образом, особых проблем в вопросе, как пользоваться эхолотом, не возникает. Важно прислушаться к изложенным рекомендациям, учесть условия эксплуатации приспособления, тогда оно поможет добывать поистине грандиозные уловы.

Эхолот состоит из четырех основных элементов: передатчика (излучателя), приемника (датчика), преобразователя (тран-дюсера) и экрана (дисплея).

Передатчик вырабатывает следующие через определенные интервалы времени высокочастотные импульсы. В современных эхолотах применяются частоты 50 и 200 кГц, иногда встречается частота 192 кГц. Излучаемые преобразователем звуковые сигналы распространяются в воде со скоростью около 1500 м/сек. и отражаются от дна, рыб, водорослей, камней и пр. предметов (Рис . 1 ). Достигшие до приемника эхо-сигналы возбуждают в нем электрические импульсы, которые затем усиливаются в преобразователе и поступают в дисплей.

Преобразованные результаты зондирования отображаются на экране прибора в удобной для восприятия графической или алфавитно-цифровой форме.

Рис. 1. Принцип работы эхолота

Дисплей отображает результаты ультразвукового зондирования и управляет работой прибора. Для этого на нем имеется жидкокристаллический монохромный или цветной экран и клавиатура (рис . 2 ).

Изображение на экране подводного пространства под судном получается в результате использования так называемых разверток (иногда используется другое название - прокрутка). Основная рабочая развертка (быстрая) - вертикальная развертка . Каждый принятый приемником эхолота отраженный сигнал отображается на экране в виде темной точки или вертикальной полосы, отстоящей от линии поверхности на расстоянии, пропорциональной глубине отражающего объекта. Быстрая вертикальная развертка на правой стороне экрана дает текущую (мгновенную) картину под судном.

Отображение подводного пространства под судном в координатах «глубина - время» осуществляется посредством вспомогательной (медленной) горизонтальной развертки , передвигающей текущее изображение влево по экрану. Таким образом, на левой стороне экрана создается картина того, что происходило под водой во время зондирования за некий предыдущий отрезок времени.

Если судно неподвижно, то дно будет отображаться в виде горизонтальных полос, а попадающие в луч излучателя рыбы в виде отметок (о них речь пойдет позже), перемещающихся влево вместе с разверткой.

При движении судна изображение дна будет изменяться соответственно изменениям глубины. При этом для наглядности картины, скорость развертки должна соответствовать скорости движения судна - для этого в большинстве эхолотов имеется возможность ее регулировки.

В связи с таким способом получения изображения необходимо понимать, что находящаяся на экране картина - это прошлое событие. Так, находящаяся на экране отметка рыбы означает не то, что она в данный момент находится под судном в луче излучателя, а то, что она какое-то время назад была там. Для того чтобы видеть, что происходит непосредственно под судном в момент наблюдения, во многих моделях эхолотов вдоль правого края экрана создается дополнительное окно, в котором отображение производится без горизонтальной развертки.

Рис. 2. Внешний вид дисплея эхолота

Преобразователь (тран-дюсер) эхолота

Преобразователь является важнейшим элементом эхолота, во многом определяющим его характеристики. Он преобразует энергию электрических высокочастотных импульсов в ультразвуковые колебания и, в то же время, производит обратное преобразование отраженных ультразвуковых сигналов в электрические сигналы.

По способу преобразования электрической энергии в звуковую существуют несколько видов преобразователей, но на малых судах в силу их малых размеров прижились только пьезоэлектрические.

Основным элементом пьезоэлектрического преобразователя является кристалл титаната бария (встречаются кристаллы и из других материалов) цилиндрической формы с нанесенными на его поверхности металлическими покрытиями. Такой кристалл помещается в металлический или пластиковый корпус и заливается хорошо проводящим звук материалом.

Рис. 3. Диаграмма излучения преобразователя

Под воздействием приложенного к рабочим поверхностям кристалла переменного электрического поля в нем возникают упругие колебания, в результате чего кристалл начинает сокращаться и расширяться, вызывая возникновение волн в воде.

Отраженные от дна или каких-либо других подводных объектов волны, воздействуя на кристалл, вызывают появление на его рабочих поверхностях переменного напряжения, поступающего на приемник эхолота.

Принято считать, что преобразователь излучает и принимает звуковую энергию в пределах конуса. На самом деле «конус» - это лишь удобное для пользователей представление характеристики излучения. Реальная диаграмма излучения имеет многолепестковую структуру - главный лепесток, излучающий основную часть энергии, и ряд боковых лепестков (рис . 3 ).

Виды преобразователей

Используемые в рыбопоисковых эхолотах преобразователи различаются по следующим признакам:

По составу данных , которые может поставлять преобразователь

По материалу , из которого сделан корпус преобразователя;

По количеству лучей ;

По месту установки преобразователя на судне.

Состав данных

Основное назначение преобразователя - получение сигналов о глубине объектов. Однако существуют преобразователи, в корпусах которых устанавливаются дополнительные датчики, позволяющие измерять и передавать в дисплей температуру воды и скорость судна.

Материал

Преобразователи изготавливаются из пластмасс или из металла - латуни или бронзы.

Пластмассовые корпуса обычно используются на судах с корпусами из металла или из стеклопластика. Пластмассовый преобразователь, установленный в деревянный корпус, может быть раздавлен при набухании дерева после спуска судна на воду.

Металлические преобразователи предназначены для установки на суда со стеклопластиковыми или деревянными корпусами. При установке бронзового преобразователя на металлический корпус может возникать электрохимическая реакция, разрушающая корпуса судна и преобразователя в месте их контакта. В преобразователях с металлическими корпусами могут устанавливаться датчики температуры воды и скорости.

Количество лучей

Какое-то время назад эхолоты в основном были однолучевыми. Сейчас они постепенно вытесняются из номенклатуры фирм-производителей двухлучевыми, причем их цена становится сопоставима с ценам однолучевых эхолотов. Два луча получаются за счет наличия двух частот - 50 и 200 кГц, поэтому эхолоты называют двухчастотными. Такие приборы могут работать как на одной из двух частот, так и одновременно на двух.

Существуют так же и экзотические модели производства фирмы Humminberd, в которых формируются три и шесть лучей - для расширения зоны просмотра в первом случае и для создания псевдотрехмерной картины во втором.

Место установки

Существуют три основных способа установки преобразователя - с внутренней стороны корпуса («in-hull»), на транце и на днище («Thru-hull»).

Рабочая частота эхолота

Глубина обнаружения подводных объектов и точность их различения при одинаковой мощности излучения зависит от частоты.

В выпускаемых ранее эхолотах использовались либо высокие (192 кГц - в эхолотах Lowrance и Eagle, 200 кГц - в эхолотах Garmin, Raymarine и др.) либо низкие - 50 кГц. В настоящее время, в связи с широким распространением двухчастотных эхолотов, остались лишь две частоты - 50 и 200 кГц, позволяющие использовать один кристалл для работы на двух частотах одновременно и порознь.

Ширина диаграммы излучения обратно пропорциональна частоте излучения - чем выше частота излучения, тем уже конус, и тем самым выше плотность заключенной в нем звуковой энергии, а отсюда - большая глубина и лучшая способность обнаружения мелких объектов, более подробное отображение на экране.

При работе на низких частотах ширина конуса намного шире и, соответственно, плотность энергии в конусе меньше со всеми вытекающими отсюда последствиями. Но, с другой стороны, более широкая диаграмма излучения позволяет обнаруживать рыбу в более широкой зоне, чем при работе на высокой частоте.

Появление двухчастотных эхолотов позволило объединить достоинства каждой из частот в одном приборе и избавило покупателя от необходимости разрешать проблему выбора эхолота с широким или узким лучом. Современные двухчастотные (двухлучевые) эхолоты позволяют работать с одним из двух имеющихся лучей, а также с обоими сразу.

Фирмы-производители рыбопоисковых эхолотов обычно выпускают большое количество моделей преобразователей с различными углами излучения. Так, компания Garmin предлагает преобразователи на частоте 200 кГц с углами конуса от 8 до 20 градусов, на частоте 50 кГц - с углом 45 градусов. Двухлучевые эхолоты этого производителя имеют ширину луча 15 и 45 градусов. Примерно такие же показатели имеют преобразователи и других фирм. Следует отметить, что преобразователи производят и поставляют всем изготовителям эхолотов несколько специализированных фирм.

Влияние среды распространения ультразвуковых волн

Вода, являясь средой распространения созданных преобразователем ультразвуковых волн, оказывает существенное влияние на работу эхолота, поэтому знание особенностей прохождения волн в воде полезно владельцу для эффективного использования прибора.

На эффективность работы эхолота оказывают влияние следующие характеристики среды распространения:

- Затухание энергии звуковых волн в воде;

- Наличие отражений звуковых волн в воде.

Затухание энергии

Затухание звуковой энергии в воде состоит из двух составляющих - затухание свободного пространства и затухание в среде распространения.

Затухание свободного пространства - это абстрагированное от среды распространения, зависящее только от дальности, ослабление звуковой энергии.

При активной гидролокации, когда звук проходит одно и то же расстояние дважды, затухание свободного пространства пропорционально четвертой степени глубины.

Затухание энергии звуковых волн в воде объясняется ее поглощением и рассеиванием находящимися в воде минеральными и органическими частицами, микроорганизмами и пузырьками воздуха.

Наименьшее затухание вносит пресная холодная вода - из-за низкой температуры она обладает более высокой плотностью и в ней находится минимум органики. В пресной воде с одинаковым успехом можно пользоваться эхолотами как с низкой, так и с высокой частотами излучения.

Соленая морская вода, напротив, содержит большое количество солей, планктона и минеральных частиц, особенно в хорошо прогретых верхних слоях моря, поглощающих и рассеивающих энергию звуковых волн. Значительное ослабление энергии в соленой воде вносят содержащиеся в ней пузырьки воздуха, возникающие при образовании ветровых волн.

Наличие отражений

Отражения в любой среде - в воде, в воздухе - образуются неоднородностями, отличными по плотности от среды. Ими могут быть какие-либо предметы (камни, грунт, рыба, растительность, воздушные пузыри), либо слои воды с разной температурой (так называемые термоклины, речь о которых пойдет позже). В глубоких водоемах может быть несколько тер-моклинов.

Если в пресной воде затухание звуковой энергии на разных частотах практически одинаковы, то в морской воде затухание и отражение от термо-клинов с ростом частоты увеличивается. Поэтому в эхолотах, предназначенных для поиска рыбы в море, используются частоты 50 кГц, а в некоторых профессиональных эхолотах для больших глубин применяется частота 28 кГц.

Отражающие свойства дна

Дно пресноводных водоемов и морей имеет неоднородную структуру, включающую разнообразные по плотности грунты - ил, песок, глину, каменную плиту, галечные россыпи, покрытые, как правило, разнообразной растительностью. Все эти виды грунтов имеют разную способность отражать и поглощать звуковые волны. Камни и глина хорошо отражают звуковые волны, создавая на экране широкую линию. Мягкие грунты - ил и песок, а также растительность плохо отражают волны, создавая на экране тонкую линию. В то же время мягкие грунты проницаемы для ультразвука, потому на экране эхолота можно наблюдать под ними более плотные подстилающие поверхности.

Влияние расположения преобразователя

Преобразователь с установкой внутри корпуса

Преобразователи «in-hull» прикрепляются прямо к внутренней стороне корпуса судна. Они применяются только на судах с корпусом из стеклопластика. Преобразователи этого типа не подходят для судов с металлическим и деревянными корпусами, а также с многослойными стеклопластиковыми корпусами с пористым наполнителем.

Преобразователь «In-Hull» обычно крепится к стеклопластиковой обшивке с помощью эпоксидного клея. Применение пластичных герметиков для его крепления недопустимо из-за их плохой акустической проводимости. Преобразователи необходимо устанавливать так, чтобы между ними и водой была только обшивка корпуса без каких-либо усиливающих или повышающих плавучесть вставок.

При использовании преобразователя «In-hull» звуковые волны проходят через стеклопластиковую обшивку корпуса, теряя при этом часть энергии, в результате чего снижается максимальная глубина и возможность обнаружения рыбы.

Преобразователь с установкой на транец

Преобразователи этого типа (рис . 4 .) используются, как правило, на небольших тихоходных судах.

Рис. 4. Преобразователь с установкой на транец

Преобразователи этого типа устанавливаются на расположенный на транце специальный кронштейн ниже уровня воды. Конструкция кронштейна позволяет преобразователю откидываться при наезде на какое-либо препятствие, предотвращая тем самым повреждение преобразователя и транца.

Достоинства такой установки - простота монтажа, демонтажа и обслуживания.

Недостаток - нахождение рядом с гребными винтами, вращение которых приводит к возмущениям воды, снижающим эффективность преобразователя. Если на малых оборотах еще можно найти подходящее место на транце, то на больших и скоростных судах работающие на больших оборотах винты создают сильное возмущение воды, насыщают воду пузырьками воздуха, которые экранируют преобразователь, практически исключая возможность работы.

Преобразователь с установкой на корпусе («Truehull»)

Устанавливаемые на корпус преобразователи типа «True Hull» (рис . 5 ) вставляются в отверстие, вырезанное в днище судна.

Рис. 5. Преобразователь с установкой на корпусе

Этот тип преобразователя обладает наилучшими характеристиками, но и наибольшей ценой. Они предназначены для установки на большие и скоростные суда с подвесными и стационарными двигателями. Размещаются обычно на плоской части днища перед винтами в местах с плавным обтеканием водой. Если судно имеет V-образные обводы, то для горизонтального расположения преобразователя используют специальные прокладки из пластмассы, что на большой скорости приводит к появлению кавитации и, соответственно, к снижению эффективности эхолота (о кавитации - см. ниже). Для улучшения обтекаемости излучателя существуют специальные обтекатели, снижающие турбулентность и кавитацию.

Достоинством такого преобразователя - высокая эффективность и качество сигнала.

Недостаток - сложность установки и обслуживания, необходимость регулярной очистки от обрастания водорослями.

Влияние скорости движения на работу преобразователя

Перед рыбакам, профессионалами и любителями долгое время никаких проблем, связанных с использованием эхолотов на их судах, не возникало - скорости у тех и других были невелики. Но по мере роста скоростей владельцы эхолотов стали замечать нарушения в работе эхолотов - пропадания отражений, появление шумовых помех на экране, ослабление отраженных сигналов.

Главным источником таких помех является кавитация - нарушение непрерывности текущей жидкости. При движении правильно сконструированного судна в воде его подводная часть обтекается плавно. Если на корпусе имеются какие-либо выступающие части - фланец заборной или сливной трубы, заклепки, головки болтов и пр., вокруг них при движении начнут образовываться завихрения, т. е. поток станет турбулентным, а при достижении какой-то критической скорости начнут возникать наполненные паровоздушной смесью кавитационные пузырьки, переходящие в каверны. Воздушные пузырьки, вследствие малой плотности заполняющего их газа, отражают звуковые волны и частично или полностью маскируют пространство под судном.

Наиболее подвержены помехам преобразователи, устанавливаемые на транце: мало того, что они сами являются источником кавитации, они еще получают все пузырьки, образовавшиеся на корпусе судна. Но основным источником помех для транцевого преобразователя является высокооборотный гребной винт.

В наилучшем положении находятся преобразователи «In Hull» и «True Hull» при их правильном расположении в местах с плавным обтеканием. При установке преобразователя «True Hull» на скоростных судах его рабочая поверхность, во избежание образования на нем кавитации, не должна выступать из корпуса, но и не должна располагаться в углублении.

Чувствительность эхолота

Понятие «чувствительность» характеризует способность эхолота выделять слабые отраженные сигналы на фоне акустических помех и шумов приемника. Величина чувствительности определяет возможность обнаружения мелких предметов на больших глубинах.

Приемник эхолота работает в очень широком диапазоне напряжений - ведь мощность принимаемых отраженных сигналов пропорциональна четвертой степени глубины. Поэтому он должен хорошо принимать слабые сигналы от мелких предметов как на максимальных глубинах, так и на предельно малых.

Необходимость работы в столь широком диапазоне уровней сигналов приводит к определенному противоречию в выборе чувствительности. С одной стороны, высокая чувствительность позволяет получать большое количество информации о различных объектах на предельно больших глубинах, но, вместе с тем, на малых глубинах такой эхолот будет принимать сигналы вне главного луча боковыми лепестками диаграммы направленности преобразователя.

Для устранения этого противоречия в эхолотах имеется регулировка чувствительности, которая в недалеком прошлом осуществлялась вручную. В современных эхолотах в дополнение к ручной регулировке имеется автоматическая.

Автоматическая регулировка устанавливает чувствительность по уровню отражений от дна так, чтобы на экране были отметки от рыбы и дна. Изменение чувствительности осуществляется автоматически в соответствии с изменениями глубины и состояния воды. Автоматический режим обеспечивает нормальную работу эхолота практически во всех ситуациях, поэтому он, в основном, и используется. При необходимости, этот режим может быть отключен, и регулировка будет осуществляться вручную.

Установка эхолота

После того как мы познакомились с принципом работы, устройством и характеристиками рыбопоисковых эхолотов, можно перейти к самой интересной части - знакомству с основами их эксплуатации. Поскольку изделия различных производителей незначительно отличаются друг от друга, за основу возьмем какую-либо распространенную модель, например, из серии эхолотов Garmin.

В данном разделе мы рассмотрим способы установки преобразователей и методы общения с эхолотом в процессе работы.

Установка излучателя

Правильная установка преобразователя является ключевой по важности операцией для обеспечения эффективной работы эхолота. Не следует устанавливать преобразователь позади заклепок, ребер, отверстий для забора воды или других неровностей на днище, которые могут создавать облака воздушных пузырьков и образовывать завихрения воды. Очень важно, чтобы преобразователь работал в спокойном потоке воды, иначе его возможности будут серьезно ухудшены.

Установка преобразователя на транец

Транцевый преобразователь поставляется со специальным кронштейном для крепления к транцу. Кронштейн обычно имеет подпружиненный элемент, позволяющий преобразователю откидываться назад при наезде на какое-либо препятствие.

Основные принципы установки преобразователя показаны на рис. 6.

Рис. 6. Принцип установки преобразователя на транец

Установка преобразователя «In Hull» в корпусе

На стеклопластиковых судах для удобства эксплуатации можно устанавливать преобразователь в корпусе. Некоторые фирмы выпускают для этого специальные приборы, но с таким же успехом внутри корпуса можно установить обычный транцевый преобразователь. На многих пластиковых малых судах имеются специально приготовленные места для установки преобразователя.

Часто пластиковые корпуса имеют в своей структуре усиливающие элементы или пористые наполнители, препятствующие распространению ультразвука, поэтому прежде чем приклеивать преобразователь, проверьте это место следующим образом. Налейте в трюм, в место предполагаемой установки, некоторое количество воды, опустите в нее рабочую поверхность преобразователя и проверьте наличие на экране изображения подводного пространства. Сравните полученные значения глубины с реальными. Если разницы нет, то смело можете приклеивать преобразователь в это место.

Установка преобразователя «True Hull» в корпус Преобразователи «True Hull» устанавливают в высверленное в днище судна отверстие. Наружные и внутренние поверхности корпуса около отверстия покрываются слоем герметика, преобразователь с кабелем вставляется в отверстие и крепится через шайбу гайкой.

Преобразователи должны крепиться горизонтально перед винтом, килем и любыми выступами, которые могут быть причиной образования пузырьков воздуха. Если поверхность днища наклонная, преобразователь ставят с помощью горизонтирующих прокладок. Для больших бронзовых преобразователей выпускаются специальные обтекатели (рис . 7 ).

Рис. 7. Обтекатель для бронзового преобразователя

Эксплуатация эхолота

Отображаемая информация

Современный рыбопоисковый эхолот может получать и отображать самую разнообразную информацию о состоянии водной толщи и находящихся в ней объектах. Ниже перечислено то, что можно увидеть на экране дисплея (рис . 8 ).

Рис. 8. Изображение на экране эхолота

Управление эхолотом

Управление эхолотом осуществляется с помощью нескольких кнопок и экранных меню (рис . 9 ).

Рис. 9. Органы управления эхолота

Рис. 10. Панель управления и информация на экране

В верхнем левом углу экрана (рис. 10 ) можно видеть панель управления и различную информацию, в том числе глубину напряжение источника питания, температуру воды и скорость движения (при наличии соответствующих датчиков). В правой части экрана находится линейка шкалы глубин и функция «Луч». Символы сигнализации или системных сообщений представлены под изображением дна.

Теперь познакомимся с основным опциями экрана, с помощью которых осуществляется управление работой эхолота.

Управление эхолотом

Это меню (рис . 11 ), дающее доступ к установкам, наиболее часто используемым в работе эхолота - к шкале глубин (Depth Range), масштабирования (Zoom) и чувствительности/усиления (Gain). Для этого на панели управления кнопками-стрелками < и >»передвигают курсор (белое поле) на нужную опцию. Выбор желаемой установки осуществляется стрелками «^и V».

Шкала глубин (Range)

Шкала глубин (рис. 11 ) необходима для установки и просмотра на экране определенных участков толщи воды. Установка осуществляется курсором на раскрывающемся в левой части экрана меню глубин. Впрочем, прибор может автоматически выбирать шкалу, соответствующую глубине под судном в настоящий момент и изменять ее при движении судна - для этого достаточно установить курсор шкалы глубин на «Auto» и нажать «Enter».

Рис. 11. Меню панели управления

Масштаб (Zoom)

Функция «Масштаб» используется для выбора степени увеличения изображения отдельных интересующих участков на экране. Функция «Масштаб» позволяет увеличить все объекты в выбранном диапазоне глубин. Величина масштаба устанавливается в раскрывающемся меню. После установки экран делится на две части, на одной из которых ведется полномасштабный просмотр, а в другом - только выбранный участок в установленном масштабе (рис . 12 ).

Рис. 12.

Усиление, чувствительность (Gain)

Ранее уже говорилось о влиянии чувствительности на эффективность работы эхолота. Высокая чувствительность позволяет получать большое количество деталей, но может привести к появлению шумов в виде засветки экрана и к приему отражений от предметов, расположенных в стороне от судна боковыми лепестками, Поэтому во всех приборах имеются органы для ее регулировки. В данном приборе чувствительность устанавливается стрелками в раскрывающемся окне GAIN (рис .13 ).

Рис. 13.

По умолчанию в эхолоте устанавливается нормальный уровень чувствительности, соответствующий положению Normal Gain на шкале в левой части экрана. При необходимости получить большее количество деталей следует увеличивать чувствительность, выбирая на шкале положительные значения настроек, при необходимости уменьшения чувствительности следует выбирать отрицательные значения.

Меню установок содержит также настройки эхолота, которые не требуют частых регулировок. Сюда входят настройки «Изображение»(Chart), «Инструменты» (Tools), «Цифры» (Nambers), «Сигнализация» (Alarm), «Системные настройки» (System), «Калибровка» (Calibr), «Единицы измерения» (Units) и «Управление памятью» (Memory), «Символ рыбы» (Fish Symbols). Если эхолот двухчастотный, то в состав меню войдет еще и установка частоты. Рассмотрим некоторые из них.

Изображение (Chart)

Данная настройка устанавливает скорость прокрутки, т. е. скорость обновления информации на экране. Осуществляется это с помощью функции Scroll Speed, позволяющей выбрать одну из трех скоростей - быструю (Fast), среднюю (Medium) и медленную (Slow) в соответствии с условиями работы.

Частота (Frequency)

Эта позиция меню предназначена для выбора частоты излучения - высокой частоты 200 кГц (устанавливается по умолчанию), низкой частоты 50 кГц или обоих сразу.

Символы рыбы (FishSymbols)

Эта установка позволяет пользователю выбирать отображать подводные объекты в виде символов-рыбок, либо в виде отраженных сигналов (дуг). Выбор осуществляется в раскрывающемся меню с символами рыб и позицией «Off» - выключить. В этой позиции на экран эхолота будут выводиться все принятые отраженные сигналы. При выборе любого символа при обнаружении любого объекта на экране будут появляться только символы рыб. Если эхолот будет работать в двухчастотном режиме, то рыбы, облучаемые узким лучом, будут черными, а облучаемые только широким лучом - белыми.

Белая линия (Whiteline)

Функция Whiteline позволяет определять структуру слоев породы, составляющих дно. Если при выключенной функции дно отображается черным цветом, то при включении этой функции дно будет рисоваться в соответствии с плотностью его слоев оттенками черного и серого цветов.

Инструменты (Tools)

Функция Tools имеет четыре набора инструментов - «Линия глубины» (Depth Line), «Луч» (Flasher), «Имитатор» (Simulator) и «Шумоподавитель» (Noise Reject), помогающих распознавать подводные объекты.

Инструмент Depth Line используется для определения глубины до объекта или для его выделения. Представляет горизонтальную линию, управляемую кнопками-стрелками. Положение линии на оси глубин в цифровой форме отображается в информационном окне на экране.

Активированный инструмент «Flasher» (Луч) создает изображение на вертикальной полосе. Этот инструмент позволяет яснее представлять на экране детали водной толщи и поверхности дна.

Функция «Noise Reject» (Шумоподавление) позволяет удалять с экрана нежелательные помехи. Установка режима шумоподавления может осуществляться автоматически и вручную. Следует иметь в виду, что при высоких уровнях подавления может быть потеряна часть малых объектов.

Инструмент «Simulator» используют для изучения эхолота и отработки навыков работы с ним.

Сигнализация об обнаружении рыбы (Alarm)

Эхолот может подавать звуковые сигналы об обнаружении рыбы. Сигнализация может быть настроена на обнаружение различных по размеру рыб (маленькая, средняя, большая и в различных вариантах). Сигнализация будет работать независимо от включения функции Fish Symbols.

Помимо этого эхолот может подавать сигналы тревоги при изменении измеряемой глубины меньше заданного значения или при превышении его.

Изображение на экране эхолота

Для работы с эхолотом очень важно понимать, что мы можем реально видеть на экране и не ожидать большего, чем он может дать. Чтобы разобраться во всем этом, вспомним, с чего мы начали наше знакомство с эхолокацией - со способа излучения и приема.

Как уже кратко отмечалось в главе «Устройство и характеристика эхолотов», преобразователь эхолота излучает звуковые волны в направлении дна. Область, покрываемая излучением, условно описывается конусом с вершиной в излучателе и зависит от величины этого угла и глубины водоема. На рисунке 5 показаны сечения конусов плоскостями на разных глубинах для преобразователей с частотой 50 кГц и углом конуса 20°, и с частотой 200 кГц и углом конуса 10°. При использовании таких преобразователей поверхности покрытия на глубине 9 м будут представлять соответственно круг диаметром 6 и 1,8 м.

Для пользователя очень важно понимать, что в соответствии с принципом действия эхолот измеряет только одну координату - глубину, и поэтому не может давать пространственную картину водного пространства в конусе излучения (рис . 14 ). Прибор не может определить, где в пределах конуса находится рыба, где водоросли, а только лишь сообщает, что они находятся на одной глубине. Особенно важно помнить об этом при использовании преобразователей с широкими диаграммами направленности.

Рис. 14.

Определение типа дна эхолотом

Эхолот может распознавать тип дна под ним - твердый грунт, ил, водоросли. Твердые породы лучше отражают звуковые волны, чем мягкий ил или песок. Слой твердого дна будет показан на экране более широкой полосой, чем у мягкого дна.

Для улучшения распознавания сильных и слабых сигналов в эхолотах существует функция White Line - «Белая линия» (в ряде случаев используется термин «серая линия»). При включении этой функции дно отображается оттенками черного и серого цвета. Например, ил на дне дает слабый отраженный сигнал, который отображается на экране с тонкой серой окантовкой, а изображение твердого дна изображается с широкой серой окантовкой.

Функция «Белая линия» позволяет определить структуру слоев пород, составляющих дно. Получая сведения о сравнительной плотности этих слоев, можно точнее определить их структуру.

Определение рыбы эхолотом

При правильно установленном преобразователе и должной настройке эхолота рыба будет отображаться на экране в виде дуг. Такое изображение получается из-за изменения расстояния до рыбы при ее прохождении через конус излучения. При пересечении границы конуса расстояние от нее до преобразователя будет максимальным.

По мере подходу к оси конуса расстояние будет уменьшаться, что будет отображаться на экране. После прохождения оси расстояние до рыбы начнет увеличиваться, в результате чего на движущейся развертке экрана появится изображение дуги.

Размер и кривизна дуги зависит от ширины диаграммы направленности преобразователя. Чем шире конус излучения, тем более ярко выражена дуга.

При вхождении рыбы в конус излучения ее изображение будет тонким из-за ослабления мощности на краях диаграммы. При ее приближении к центру толщина дуги будет увеличиваться и, в центре диаграммы станет наибольшей. При выходе рыбы из зоны излучения картина будет изменяться в обратном порядке - уменьшаться.

Если рыба проходит по краю конуса, то дуги может не получиться или она будет очень небольшой. Наличие в эхолотах функции Fish Symbols позволяет отображать принятые сигналы в виде символов - «рыбок» различных размеров. Эта функция может использоваться только при работе эхолота в автоматическом режиме. При включенной функции Fish Symbols отображает только символы, не выводя на экран никакие другие отметки.

Ряд моделей рыбопоисковых эхолотов имеют возможность подключения датчиков бокового обзора. В этом случае они могут вести обнаружение рыбы не только под судном, но и по обеим сторонам от него.

Эхолот для рыболова

Эхолот ищет и находит рыбу, и это является его основным предназначением. Однако каждый мало-мальски грамотный рыбак знает, что рыба не распределяется равномерно по пространству водоемов, а собирается в определенных местах, определяемых рельефом дна, резкими изменениями глубин и даже перепадами температур между слоями воды. Интерес могут представлять коряги, камни, ямы, растительность. Иными словами, рыба не только ищет, где глубже, но и где ей лучше ночевать, охотиться, маскироваться, кормиться. Поэтому первостепенная задача эхолота - это определение глубин водоема и изучение рельефа дна.

Результаты измерения глубины на экране эхолота осуществляются двумя способами - в графической форме (отображение рельефа дна на фоне шкалы глубин) и в цифровой форме в углу экрана. Следует иметь в виду, что при работе эхолота на предельно малых глубинах могут возникнуть проблемы с измерениями, связанными, в первую очередь, с наличием у любого эхолота «мертвой зоны», а также наличием сильных отражений от находящихся вне конуса излучения предметов и участков дна, облучаемых боковыми лепестками диаграммы. Такие помехи особенно заметны в эхолотах, не имеющих автоматической регулировки усиления.

Отображение рельефа дна

При измерении глубины вдоль правой границы экрана отображается в виде точки текущее значение измеряемой глубины. Для обеспечения возможности наблюдения за рельефом эта точка сохраняется на экране и сдвигается по нему справа налево на один шаг, а ее место занимает новая точка, соответствующая очередному отсчету глубины. Затем происходит следующий сдвиг - так запоминается каждая последующая точка через промежутки времени, равные периоду следования зондирующих ультразвуковых импульсов. В результате на экране появляется линия, являющаяся отображением рельефа дна. Следует особо отметить, что полученная линия отображает рельеф на пути, уже пройденным судном, что следует учитывать при выборе позиции для ловли.

Следует также иметь в виду, что текущее значение глубины под судном отображается на шкале на правой стороне экрана. Это значение повторяется так же на экране и в цифровой форме.

Если судно неподвижно, то глубина под ним не меняется и, следовательно, линия будет прямой и горизонтальной (рис . 15 ).

При движении судна над неровным дном отметка глубины в правом углу экрана будет менять свое положение соответственно изменению глубины под датчиком эхолота. При уменьшении глубины каждая последующая точка будет располагаться выше предыдущей, при увеличении глубины - ниже предыдущей. В результате на экране появляется линия, повторяющая рельеф дна на пути следования судна.

Рис. 1 5 . Изображение на экране при неподвижном судне

Для рыбака наибольший интерес представляют самые различные неоднородности рельефа дна, так как на них чаще всего ловиться рыба. Это могут быть песчаные «косы», намываемые течением с внутренней стороны на повороте реки, и резкие переходы на подмытых течением внешних берегах. Места с такими резкими переходами должны интересовать рыбака, т. к. на них может находиться крупная рыба.

На озерах Карелии и Белом море часто встречаются подводные скалы самых разных размеров - небольшие «луды и корги», и обширные галечные либо каменистые «банки» - любимые места крупной хищной рыбы. Недаром профессиональный лов рыбы в море ведется, в основном, на банках. Автору этих строк как-то довелось на одной луде в Белом море в компании двух приятелей за каких-то 20 минут наловить на голые крючки ведро трески.

Еще один предмет поиска для рыбака - это ямы, в которых может находиться крупная хищная рыба.

Вообще, любые резкие изменения глубин привлекают рыбу и позволяют надеяться на ее обнаружение на данных участках. При ведении поиска с использованием эхолота следует искать участки, отличающиеся от преобладающего рельефа дна. На мелких участках нужно искать впадины и ямы, на глубоких участках - гребни, косы, луды, перекаты, на изрезанных участках - ровные площадки.

Еще один важный показатель, позволяющий определить перспективность того или иного участка для лова рыбы - структура дна. Структура дна говорит о том, из каких грунтов состоит дно - глина, песок, ил, скала или галька. С помощью эхолота точно распознать тип грунта невозможно, можно только различать его по плотности. На экране эхолота плотный грунт (глина, камень) отображается светлым тоном, а мягкие грунты - темным. По наличию ила и растительности можно судить о том, какая рыба может водиться на данном участке.

Большой интерес для рыбака представляют коряги или затонувшие стволы деревьев, около которых с большой степенью вероятности можно обнаружить рыбу. Они отличаются по плотности от грунта и обычно хорошо видны на экране эхолота (рис . 16 ). Такие предметы целесообразно запоминать в памяти приемника GPS, т. к. их повторное обнаружение осуществить намного сложнее, чем косу или перекат. То же самое относится и к другим относительно малоразмерным объектам - лудам, ямам и т. п.

Рис. 16 .

Отображение рыбы

Ранее уже упоминалось, что на экране эхолота рыба отображается в виде дуг. Это происходит из-за того, что при прохождении рыбы через конус излучения расстояние от нее до преобразователя меняется - сначала оно уменьшается, а затем увеличивается снова. Поскольку по мере удаления от оси диаграммы направленности преобразователя энергия излучения убывает, то при прохождении рыбы через облучаемую зону толщина дуги изменяется - сначала она увеличивается, затем снова уменьшается. Размер дуги зависит, прежде всего, от ширины конуса излучения - чем шире конус, тем длиннее дуга (рис . 17 ), а также от скорости движения рыбы относительно судна. Чем выше эта скорость, тем слабее и бледнее эта дуга. Поэтому, при поиске рыбы с катера на ходу, получив на экране слабые дуги, стоит вернуться и на малой скорости пройти это место.

На форму дуги могут влиять и характерные особенности рыбы, позволяя, при наличии опыта, с некоторой вероятностью, определять вид рыбы, хотя не все опытные рыбаки разделяют эту точку зрения. Возможно, и проводились какие-либо теоретические и экспериментальные работы по распознаванию видов рыб с использованием эхолотов в интересах промыслового рыболовства, но мне такие материалы не встречались. Да и задачи обнаружения и распознавания профессионала и рыбака-любителя совершенно разные.

Рис. 17 . Принцип образования дуги

В некоторых моделях эхолотов с цветным экраном (например, в эхолотах Garmin) отраженные сигналы окрашиваются различным цветом в зависимости от уровня их мощности. Красным цветом обозначаются самые мощные сигналы, оранжевым - сильные, желтым - средние, зеленым - слабые и синим - самые слабые. В монохромных версиях тех же эхолотов уровни принимаемых сигналов обозначаются Оттенками серого цвета - чем сильнее сигналы, тем темнее его отметка, и наоборот.

Обобщая имеющиеся в прессе материалы по распознаванию рыбы и результаты опроса среди пользователей эхолотов, можно сделать следующие предположения.

Многие представляют щуку как смещенную в один конец толстую дугу, сома - как одинокую толстую дугу. Некоторые виды рыб изображаются на экране эхолота в виде нескольких тонких дуг - например, судак или лещ. Однако, при отсутствии каких-либо экспериментальных данных достоверность этих оценок невелика.

Поскольку однозначно распознать рыбу невозможно, то для повышения достоверности оценки необходимо одновременно сопоставлять полученную дугу с рельефом и структурой дна, характерным для обитания тех или иных видов рыб. Такая работа требует большого опыта работы с эхолотом, понимания характерных особенностей, повадок и привычек различных рыб.

Для облегчения обнаружения и распознавания для рыбаков с малым опытом в большинстве любительских эхолотов имеется функция отображения обнаруженной рыбы в виде символов - «рыбок» различных размеров. Они формируются путем анализа по определенным алгоритмам мощности отраженных от подводных объектов сигналов. В большинстве эхолотов используются три градации размеров - мелкая, средняя и крупная, обозначаемые соответствующими символами.

Рис. 18 .

Однако не следует считать, что, включив режим автоматического распознавания, можно будет получить от эхолота достоверную информацию о размере рыбы - автомат, он и есть автомат, вырабатывающий по уровню мощности отраженных сигналов символы установленных размеров. Уровень мощности отраженных сигналов зависит от множества факторов - от степени загрязнения воды, от наличия в ней планктона, растительности, температурных перепадов, которые эхолот не учитывает при анализе принимаемых сигналов. Помимо этого, прибор не различает всех тонких нюансов отраженных сигналов, которые легко распознает глаз человека, поэтому он может присваивать символы рыб дрейфующим в воде топлякам, воздушным пузырям, водорослям.

Символы в монохромных эхолотах обычно окрашены в черный цвет. В двухлучевых эхолотах символы рыб, полученные узким лучом, будут закрашены, а полученные широким лучом - будут обозначены в виде контура (рис . 18 ).

Еще одна проблема автоматического распознавания заключается в невозможности определения размера рыб, обозначаемых самым крупным символом - он может быть присвоен и килограммовому окуню, и сому весом несколько десятков килограммов.

Для распознавания крупных экземпляров рыб в некоторых современных эхолотах имеется функция реального сканирования. Приборы, оснащенные такой функцией, выдают на экран изображение рыбы, пропорционально ее истинному размеру. Имея шкалу глубин, можно достаточно легко определить размер рыбы.

В заключение рассуждений на тему автоматического распознавания следует отметить, что самым лучшим устройством для этого пока еще является человеческий глаз и мозг - недаром в профессиональных эхолотах на экран выводятся только отображения реальных сигналов.

Масштабирование

Масштабирование является весьма эффективным приемом для наблюдения за рыбой. Сущность масштабирования заключается в увеличении (растягивании) отдельных выделенных по глубине участков в несколько раз обычно в два и в четыре раза. Для осуществления этой операции в эхолотах существует функция «ZOOM» (масштаб). Картину с измененным масштабом можно рассматривать на полном экране, а также в режиме с разделенным экраном, когда на одной половине экрана будет полномасштабное изображение, а на второй половине - увеличенный вдвое или в четыре раза выбранный участок изображения (рис . 19 ), что очень удобно для просмотра интересующих мест - покрытых растительностью, коряг, ям.

Рис. 19.

В эхолотах существует еще одна интересная функция, которую так же можно отнести к автоматическому распознаванию - функция «Alarm» (сигнализация), позволяющая подавать звуковые сигналы при наступлении каких-то заранее установленных событий. Такими событиями могут быть:

- Появление на экране изображения рыбы определенного размера;

- При вхождении в район со слишком малой глубиной, либо со слишком большой;

При выходе из заданного диапазона глубин («Дрейф»).

Для более внимательного изучения изображения отраженных сигналов в некоторых моделях эхолотов существует функция остановки изображений («Режим паузы»). В этом режиме активизируется стрелка-курсор, который можно перемещать по остановившейся картинке и отмечать путевые точки (если к эхолоту подключен приемник GPS), а также глубину и координаты отмеченных курсором отметок отраженных сигналов. Функция паузы облегчает поиск таких объектов, как сваи, камни, коряги, которые могут оказаться полезными при выборе места для рыбалки.

Пока дисплей находится в режиме паузы, прибор продолжает обновлять показания глубины, однако новые данные не могут быть показаны на экране до тех пор, пока не будет отключен этот режим.