Графические методы решения уравнений. "Показательная функция. Функционально-графические методы решений уравнений, неравенств, систем" Функционально графический метод решения показательных уравнений

Точность такого решения невелика, однако с помощью графика можно разумно выбрать первое приближение, с которого начнется дальнейшее решение уравнения. Существуют два способа графического решения уравнений.

Первый способ . Все члены уравнения переносят в левую часть, т.е. уравнение представляют в виде f(x) = 0. После этого строят график функции y = f(x) , где f(x) - левая часть уравнения. Абсциссы точек пересечения графика функции y = f(x) с осью Ox и являются корнями уравнения, т.к. в этих точках y = 0 .

Второй способ . Все члены уравнения разбивают на две группы, одну из них записывают в левой части уравнения, а другую в правой, т.е. представляют его в виде j(x) = g(x). После этого строят графики двух функций y = j(x) и y = g(x). Абсциссы точек пересечения графиков этих двух функций и служат корнями данного уравнения. Пусть точка пересечения графиков имеет абсциссу x o , ординаты обоих графиков в этой точке равны между собой, т.е. j(x о) = g(x o). Из этого равенства следует, что x 0 - корень уравнения.

Отделение корней

Процесс нахождения приближенных значений корней уравнения разбивается на два этапа:

1) отделение корней;

2) уточнение корней до заданной точности.

Корень x уравнения f(x) = 0 считается отделенным на отрезке , если на этом отрезке уравнение f(x) = 0 не имеет других корней.

Отделить корни - это значит разбить всю область допустимых значений на отрезки, в каждом из которых содержится один корень.

Графический метод отделения корней - в этом случае поступают также, как и при графическом методе решения уравнений.

Если кривая касается оси абсцисс, то в этой точке уравнение имеет двукратный корень (например, уравнение x 3 - 3x + 2 = 0 имеет три корня: x 1 = -2 ; x 2 = x 3 = 1).

Если же уравнение имеет трехкратный действительный корень, то в месте касания с осью х кривая y = f(x) имеет точку перегиба (например, уравнение x 3 - 3x 2 + 3x - 1 = 0 имеет корень x 1 = x 2 = x 3 = 1).

Аналитический метод отделения корней . Для этого используют некоторые свойства функций.

Теорема 1 . Если функция f(x) непрерывна на отрезке и принимает на концах этого отрезка значения разных знаков, то внутри отрезка существует по крайней мере один корень уравнения f(x) = 0.

Теорема 2. Если функция f(x) непрерывна и монотонна на отрезке и принимает на концах отрезка значения разных знаков, то внутри отрезка содержится корень уравнения f(x) = 0, и этот корень единственный.

Теорема 3 . Если функция f(x) непрерывна на отрезке и принимает на концах этого отрезка значения разных знаков, а производная f "(x) сохраняет постоянный знак внутри отрезка, то внутри отрезка существует корень уравнения f(x) = 0 и притом единственный.

Если функция f(x) задана аналитически, то областью существования (областью определения) функции называется совокупность всех тех действительных значений аргумента, при которых аналитическое выражение, определяющее функцию, не теряет числового смысла и принимает только действительные значения.

Функция y = f(x) называется возрастающей , если с возрастанием аргумента значение функции увеличивается, и убывающей , если с возрастанием аргумента значение функции уменьшается.

Функция называется монотонной , если она в заданном промежутке либо только возрастает, либо только убывает.

Пусть на отрезке функция f(x) непрерывна и принимает на концах отрезка значения разных знаков, а производная f "(x) сохраняет постоянный знак на интервале . Тогда если во всех точках интервала первая производная положительна, т.е. f "(x)>0, то функция f(x) в этом интервале возрастает . Если же во всех точках интервала первая производная отрицательна, т.е. f "(x)<0, то функция в этом интервале убывает .

Пусть на отрезке функция f(x) имеет производную второго порядка, которая сохраняет постоянный знак на всем отрезке. Тогда если f ""(x)>0, то график функции является выпуклым вниз ; если же f ""(x)<0, то график функции является выпуклым вверх .

Точки, в которых первая производная функции равна нулю, а также те, в которых она не существует (например, обращается в бесконечность), но функция сохраняет непрерывность, называются критическими .

Порядок действий для отделения корней аналитическим методом:

1) Найти f "(x) - первую производную.

2) Составить таблицу знаков функции f(x), полагая х равным:

а) критическим значениям (корням) производной или ближайшим к ним;

б) граничным значениям (исходя из области допустимых значений неизвестного).

Пример . Отделить корни уравнения 2 х - 5х - 3 = 0.

Имеем f(x) = 2 x - 5x - 3 . Область определения функции f(x) - вся числовая ось.

Вычислим первую производную f "(x) = 2 x ln(2) - 5 .

Приравниваем эту производную нулю:

2 x ln(2) - 5 = 0 ; 2 x ln(2) = 5 ; 2 x = 5/ln(2) ; xlg(2) = lg(5) - lg(ln(2)) .

Составляем таблицу знаков функции f(x), полагая х равным: а) критическим значениям (корням производной) или ближайшим к ним; б) граничным значениям (исходя из области допустимых значений неизвестного):

Корни уравнения заключены в промежутках (-1,0) и (4,5).

Идея графического метода решения уравнения проста. Нужно построить графики функций, содержащихся в обеих частях уравнения и найти абсциссы точек пересечения. Но строить графики некоторых функций сложно. Не всегда есть необходимость прибегать к построению графиков Такие уравнения можно решать методом подбора корня, используя свойства монотонности и ограниченности функций. Это позволяет довольно быстро решать задания, предлагаемые при сдаче ЕГЭ.

Скачать:


Предварительный просмотр:

Муниципальное общеобразовательное учреждение

« Гимназия № 24»

Функционально – графический метод

Решения уравнений.

Подготовила учитель

Данилина Ольга Сергеевна.

Магадан 2007

« Функционально – графический метод решения уравнений»

Цель урока: сформировать умения решать уравнения определенного типа функционально – графическим методом, с использованием свойств ограниченности и монотонности функций

Структура урока:

Вступительное слово учителя, ознакомление с темой урока, постановка цели

Актуализация ранее полученных знаний, необходимых для освоения темы урока

Презентация ведущими, заключающая в себе изложение нового материала с образцами решения различных типов уравнений

Работа по группам, с целью первичного закрепления изученного

Проведения игры по образцу игры: «Что? Где? Когда?»

Подведение итогов урока.

  1. Во вступительном слове учитель делится своим опытом знакомства с новым методом. говорит о необходимости его освоения, его значимости, о возможности приобретения навыков более рационального решения равнений
  2. Актуализация знаний:: возрастание и убывание функций, примеры, свойства монотонности и ограниченности функций.
  3. Презентация новой темы с использованием слайдов с изложении ем теоретического материала с образцами решений уравнений.(см. приложение).
  4. Работа по группам: Каждой группе раздаются карточки с заданиями, образцы решения и оформления заданий. Ведущие урок ученики – консультанты контролируют ход выполнения заданий, при необходимости приходят на помощь. При своей работе, работающие в группах могут использовать компьютеры, которые настроены на специальную программу, позволяющую выстраивать графики функций, Благодаря этому, в затруднительных ситуациях компьютер можно использовать как средство подсказки или как возможность наглядно продемонстрировать верность выполненного решения и правильность выбранного метода.
  5. Защита представителем группы выполненных заданий, с использованием мультимедийной доски, на которой демонстрируется решение уравнений графическим методом в подтверждении верности выполненного задания. РА
  6. Проведение игры. Для каждой группы с экрана мониторов звучит вопрос, заранее записанный разными учителями школы, дается минута на обсуждение по истечении которой ребята должны дать свой обоснованный ответ. После этого с вновь включенного экрана вариант своего ответа представляет учитель, ранее задававший вопрос Таким многократным повторением рассуждений по вновь изученной теме, тем более произносимыми грамотно различными людьми, достигаются наиболее выгодные условия для усвоения новой темы.(см. прилож.)
  7. Подведение итогов: Выявление лучшей «пятерки знатоков, лучшего игрока.

Вопросы к классу;

Чему вы научились на сегодняшнем уроке

Какие уравнения можно решать методом подбора

Какие свойства функций при этом используются.

Вопросы к участникам игры:

Уважаемые знатоки, за одну минуту найдите корень этого уравнения и докажите, что он единственный.

Ответ: Сумма двух возрастающих функций, есть возрастающая функция. у =- монотонно возрастает, следовательно уравнение имеет один корень, т.к. график этой функции пересекается с прямой у=3 один раз. При х=1, мы получим верное равенство. Ответ: х=1

Уважаемые знатоки, через одну минуту назовите функции, которые содержатся в обеих частях неравенства и найдите корень данного уравнения.

Ответ:у =- показательная функция, возрастающая на множестве действительных чисел. у=6 - х - линейная функция, она монотонно убывает на множестве действительных чисел. Значит графики функций пересекаются в одной точке, уравнение имеет один корень. При х=2, получим верное равенство. Ответ: х=2

3. Уважаемые знатоки, вы ухе знаете, что уравнение имеет единственный корень х=3. Через одну минуту, ответьте, при каких значениях х, выполняется неравенство.

Ответ: неравенство выполняется при х Є , т.к. на данном интервале график функции у=, расположен ниже графика функции у =

4. Уважаемые знатоки, у многих вызывает затруднения решение уравнение. За одну минуту найдите корень этого уравнения и докажите, что он единственный.

Ответ: корень уравнения х=-3 является единственным, т.к.в левой части уравнения содержится убывающая функция, а в правой возрастающая, значит графики функций пересекаются в одной точке и уравнение имеет единственный корень.

5. Уважаемые знатоки, у меня к вам непростой вопрос. Вы легко найдете корень уравнения. Докажите, что он единственный. Ответ:х=1 – единственный корень.

Функционально – графический метод решения уравнений.

________________________________________________________________________

Цель урока: Научиться решать уравнения методом подстановки, используя свойства монотонности и ограниченности функций.

_________________________________________________________________________

Справочный материал

  1. Функция называется возрастающей (убывающей) на множестве X, если на этом множестве при увеличении (уменьшении) аргумента значение функции увеличивается (уменьшается).

Пример 1:

  1. являются возрастающими функциями

Пример 2:

являются убывающими функциями

Справочный материал

2. Сумма двух возрастающих функций, есть возрастающая функция.

Пример:

3. Сумма двух убывающих функций, есть убывающая функция.

Алгебра и начала анализа10­11 класс (А.Г.Мордкович)
Разработать урок по функционально­графическому методу решения
уравнений.
Тема урока: Функционально­графический метод решения уравнений.
Тип урока: Урок совершенствования знаний умений и навыков.
Цели урока:
Образовательные: Систематизировать, обобщить, расширить знания, умения
учащихся, связанные с применением функционально­графического метода
решения уравнений. Отработать навыки решения уравнений функционально­
графическим методом.
Развивающие: Развитие памяти, логического мышления, умения
анализировать, сравнивать, обобщать, самостоятельно делать выводы;
развитие грамотной математической речи.
Воспитательные: воспитывать аккуратность и точность при выполнении
заданий, самостоятельность и самоконтроль; формирование культуры
учебного труда; продолжить формирование познавательного интереса к
предмету.
Структура урока:
I.
АЗ
1. Организационный момент.


4. Постановка целей и задач на следующий этап урока.
II.
ФУН
1. Коллективное решение задач.
2. Постановка домашнего задания.
3. Самостоятельная работа.
4. Подведение итогов урока.

Ход урока:
I.АЗ
1.Организационный момент.
2. Устная работа с целью проверки домашнего задания.
Начнём урок с проверки домашнего задания.
Называйте ответы по цепочке.
1358.а)4x=1/16
4x=4­2
б)(1/6)x=36
6­x=62
x=­2 x=­2
1364.a)(1/5)x*3x= √ 27

3
5
¿
3
5
¿
)x=
125 б)5x*2x=0,1­3
)3/2 10x=103
x=3
x=1.5
1366.a)22x­6*2x+8=0
2x=a
a=2 , a=4
2x=2, 2x=4
x=1, x=2
1367. б)2*4x­5*2x+2=0
2x=a
2a2­5a+2=0
a=2, a=1/2
2x=2, 2x=1/2
x=1, x=­1
1371.a)5x=­x+6 y=5x y=­x+6
y
6
5
0
1
x
x=1

Молодцы, у всех получились такие ответы, есть вопросы по домашнему
заданию? Все справились?
3. Фронтальный опрос с целью АЗ по теме.
Как называются уравнения, которые вы решали в домашней работе?
Показательные.
Какие уравнения называются показательными?
Показательными уравнениями называют уравнения вида af(x)=ag(x), где а ­
положительное число отличное от 1,и уравнения, сводящиеся к этому
виду.
Какому уравнению равносильно уравнение af(x)=ag(x)?
уравнение af(x)=ag(x) (где a>0,a ≠1) равносильно уравнению f(x)=g(x)
C помощью каких основных методов вы решали показательные уравнения?
1) Метод уравнивания показателей
2) Метод введения новой переменной
3) Функционально графический метод
4.Постановка целей и задач на следующий этап урока.
Сегодня мы подробнее остановимся на решение уравнений с помощью
функционально – графического метода.
За 10 минут до конца урока вы напишите небольшую самостоятельную работу.
II.ФУН
1.Коллективное решение задач.
В чём же суть функционально­графического метода решения уравнений? Что
мы должны сделать решая уравнение таким способом?
Чтобы решить уравнение вида f(x)=g(x) функционально­графическим
методом нужно:
Построить графики функций у=f(x) и y=g(x) в одной системе координат.
Определить координаты точки пересечения графиков данных функций.
Записать ответ.
№1a)3x=­x+4

Функционально –графическим.

Введем функции.

y=3x y=­x+4
таблицу.
Каким образом строим график?
По точкам, подставляем в функцию x и находим y.
y
4
3

0
1
x

Найдём точку пересечения двух получившихся графиков.
Сколько точек пересечения у нас получилось, посмотри на рисунок?
Одна точка.
Что это значит? Сколько корней имеет данное уравнение?
Один корень, равен 1.
Ответ: x=1
б)3x/2=­0.5x+4
Каким методом мы будем решать уравнение?
Функционально –графическим.
Какой будет первый шаг при решении уравнения?
Введем функции.
Какие функции у нас получаться?
y=3x/2 y=­0.5x+4
y
4
3
0
2 x
Как мы найдём корень уравнения?

Ответ: x=2
№2 a)2x+1=x3
Каким методом мы будем решать уравнение?
Функционально –графическим.
Какой будет первый шаг при решении уравнения?
Введем функции.
Какие функции у нас получаться?
y=2x+1 y= x3

8
0
2 x
Как мы найдём корень уравнения?
Найдём точку пересечения двух получившихся графиков, корень равен 2.
Ответ: x=2
б)2x=(x2/2)+2
Каким методом мы будем решать уравнение?
Функционально –графическим.
Какой будет первый шаг при решении уравнения?
Введем функции.
Какие функции у нас получаться?
y=2x y= (x2/2)+2
Если учащийся может, строит график сразу, если нет, сначала составляет
таблицу.
y

4
0
2 x
Как мы найдём корень уравнения?
Найдём точку пересечения двух получившихся графиков, корень равен 2.
Ответ: x=2
2.Откройте дневники, запишите домашнее задание.
№№1372,1370,1371(в,г)
3.Самостоятельная работа.

а)3x+2­6x=0 (решений нет)
б)5x/5+x­1=0 (x=0)
А сейчас небольшая самостоятельная работа. Проверим как вы усвоили
материал, всё ли из вас поняли суть функционально­графического метода
решения уравнений.
№1 Решить уравнение функционально ­ графическим методом:
1 вариант
2 вариант
а)5x/5=­x2 (решений нет)
б)3x+2­3=0 (x=­1)
№2 Сколько корней имеет уравнение и в каком промежутке они находятся
1 вариант
а)3x=­x2­2 (решений нет) а) 3x=­x2+2 ((­1,5;1) два корня)
б)3x/2=6x ((­3;3,5) два корня) б)2x+x2­5=0 (­2.5;1.5) два корня)
4.Подведение итогов урока.
Чем сегодня мы занимались на уроке? Задания, какого вида решали?
Какой метод решения показательных уравнений вы сегодня освоили?
Повторим ещё раз, в чём суть функционально – графического метода решения
уравнений?
Объясните пошагово, как решаются уравнения таким методом?
Есть вопросы? Всем всё понятно?
Урок закончен, можете быть свободны.
2 вариант

Иванова Анастасия

Задание № 15 профильного экзамена по математике - это задание повышенного уровня сложности, представляющее неравенство. При решении этих неравенств учащиеся должны показать знания теорем о равносильности неравенств определенного вида, умения использовать стандартные и нестандартные методы решения. Анализ содержания школьных учебников показывает, что в большинстве из них методам решения неравенств с использованием свойств функций не уделяется должного внимания, а в заданиях ЕГЭ почти каждый год предлагаются неравенства, решение которых упрощается, если применить свойства функций. По статистике представленной на сайте Федерального института педагогических измерений в 2017 году ненулевые баллы за это задание получили около 15% участников экзамена; максимальный балл – около 11%. Всё отмеченное указывает на то, что учащиеся испытывают большие трудности при решении задания № 15 ЕГЭ. Цель : изучить различные способы решения неравенств.

:

1. Изучить теоретический материал по данной теме.

2. Рассмотреть примеры, предложенные в банке заданий ЕГЭ на сайте Федерального института педагогических измерений.

3. Изучить функционально-графические методы решения неравенств.

4. Сравнить различные методы решения неравенств.

5. Проверить экспериментальным путем какой способ решения неравенств наиболее рациональный.

Методы исследование: опрос, анкетирование, анализ, сравнение и обобщение результатов.

В своей работе мы изучили функционально-графические методы решения неравенств. Сравнили различные методы решения неравенств. Проверили экспериментальным путем какой способ решения неравенств наиболее рациональный. И пришли к выводу, что учащийся должен владеть несколькими способами решения неравенств, для того чтобы сэкономить время и снизить риск логических и вычислительных ошибок.

Скачать:

Предварительный просмотр:

Исследование различных методов решения неравенств

Иванова Анастасия Евгеньевна

Муниципальное бюджетное общеобразовательное учреждение
"Средняя школа №30 с углубленным изучением отдельных предметов"

11б класс

Научная статья (описание работы)

1. Введение

Актуальность.

Задание № 15 профильного экзамена по математике - это задание повышенного уровня сложности, представляющее неравенство (рациональное, иррациональное, показательное, логарифмическое). При решении этих неравенств учащиеся должны показать знания теорем о равносильности неравенств определенного вида, умения использовать стандартные и нестандартные методы решения.

Полное правильное решение этого задания оценивается 2 баллами. При решении задачи допустимы любые математические методы - алгебраический, функциональный, графический, геометрический и др.

По статистике представленной на сайте Федерального института педагогических измерений в 2017 году ненулевые баллы за это задание получили около 15% участников экзамена; максимальный балл – около 11%. Типичные ошибки связаны с невнимательным чтением математической записи неравенства, непониманием алгоритма решения совокупностей и систем логарифмических неравенств. Очень много ошибок допущено участниками экзамена при решении дробно-рационального неравенства (забыт знаменатель) .

Результаты выполнения задания № 15 обучающимися нашей школы на ЕГЭ по математике представлены в таблице 1 и на диаграмме (рис. 1).

Таблица 1

Результаты выполнения задания № 15 обучающимися нашей школы

Рис.1. Результаты выполнения задания № 15 обучающимися нашей школы

Результаты выполнения задания № 15 на пробном городском экзамене 11а,б классов в 2017-2018 уч. году представлены в таблице 2 и на диаграмме (рис.2).

Таблица 2

Результаты выполнения задания № 15 на пробном городском экзамене

в 2017-2018 уч. году обучающимися нашей школы

Рис.2. Результаты выполнения задания № 15 на пробном экзамене в 2017-2018 уч. году обучающимися нашей школы

Мы провели опрос учителей математики нашей школы и выявили основные проблемы, которые возникают у учащихся при решении неравенств: неверное нахождение области допустимых значений неравенств; рассмотрение не всех случаев перехода от логарифмического неравенства к рациональному; преобразование логарифмических выражений; ошибки в использовании метода интервалов и др.

С применением метода интервалов и введением вспомогательной переменной связан ряд типичных ошибок. Так например, ошибка при определении знаков на промежутках или неправильное расположение чисел на координатной прямой, согласно критериям, могут трактоваться как вычислительные ошибки. Другие, связанные с пропуском шагов алгоритма или неверным их выполнением оцениваются 0 баллом.

Всё отмеченное указывает на то, что учащиеся испытывают большие трудности при решении задания № 15 ЕГЭ по математике. В связи с этим нами была выдвинута гипотеза : если ученик будет владеть несколькими способами решения неравенств, то он сможет выбрать наиболее рациональный.

Объект исследования : неравенства.

Предмет исследования : различные способы решения неравенств.

Цель : изучить различные способы решения неравенств.

Для достижения поставленной цели решались следующие задачи :

  1. Изучить теоретический материал по данной теме.
  2. Рассмотреть примеры, предложенные в банке заданий ЕГЭ на сайте Федерального института педагогических измерений.
  3. Изучить функционально-графические методы решения неравенств.
  4. Сравнить различные методы решения неравенств.
  5. Проверить экспериментальным путем какой способ решения неравенств наиболее рациональный.

2. Основная часть

2.1. Теоретическая часть

1. Линейные неравенства

Линейные неравенства - это неравенства вида: ax + b 0; ax+b≥0; ax+b≤0, где a и b – любые числа, причем a≠0, x - неизвестная переменная.

Правила преобразования неравенств:

1. Любой член неравенства можно переносить из одной части неравенства в другую, меняя при этом знак на противоположный.

2. Обе части неравенства можно умножить/разделить на одно и то же положительное число, при этом получится неравенство, равносильное данному.

3. Обе части неравенства можно умножить/разделить на одно и то же отрицательное число, меняя знак неравенства на противоположный.

2. Квадратные неравенства

Неравенство вида

где x - переменная, a, b, c - числа, , называется квадратным. При решении квадратного неравенства необходимо найти корни соответствующего квадратного уравнения . Для этого необходимо найти дискриминант данного квадратного уравнения. Можно получить 3 случая: 1) D=0 , квадратное уравнение имеет один корень; 2) D>0 квадратное уравнение имеет два корня; 3) D квадратное уравнение не имеет корней. В зависимости от полученных корней и знака коэффициента a возможно одно из шести расположений графика функции (Приложение 1).

3. Рациональные неравенства

Рациональным неравенством с одной переменной x называют неравенство вида f(x) выражения, т.е. алгебраические выражения, составленные из чисел, переменной x и с помощью математических действий, т.е. операций сложения, вычитания, умножения, деления и возведения в натуральную степень. Алгоритм решения рациональных неравенств методом интервалов (Приложение 1).

4. Показательные неравенства

Показательное неравенство – это неравенство , в котором неизвестное находится в показателе степени. Простейшее показательное неравенство имеет вид:а х ‹ b или а х › b, где а> 0, а ≠ 1, х – неизвестное.

5. Логарифмические неравенства

Логарифмическим неравенством называется неравенство, в котором неизвестная величина стоит под знаком логарифма .

1. Неравенство в случае, если сводится к равносильному неравенству . Если же - то к неравенству .

Аналогично неравенство равносильно неравенствам для : ; для : .

Решения полученных неравенств надо пересечь с ОДЗ:

2. Решение логарифмического неравенства вида равносильно решению следующих систем:

а) б)

Неравенство в каждом из двух случаев сводится к одной из систем:

а) б)

6. Иррациональные неравенства

Если в неравенство входят функции под знаком корня, то такие неравенства называют иррациональными .

.

2.2. Практическая часть

Исследование № 1

Цель : изучить метод ограниченности функций.

Ход работы:

1. Изучить метод ограниченности функций.

2. Решить неравенства данным методом.

Для использования ограниченности функции необходимо уметь находить множество значений функции и знать оценки области значений стандартных функций (например, ) .

Пример № 1 . Решить неравенство:

Решение:

Область определения:

Для всех х из полученного множества имеем:

Следовательно, решение неравенства

Ответ:

Пример №2. Решить неравенство:

Решение:

Т.к.

Данное неравенство равносильно

Первое уравнение системы имеет один корень х = - 0,4, который удовлетворяет и второму уравнению.

Ответ: - 0,4

Вывод: данный метод наиболее эффективен, если в неравенстве содержатся такие функции, как и другие, области значений которых ограничены сверху или снизу.

Исследование № 2

Цель : изучить метод рационализации решения неравенств.

Ход работы:

1. Изучить метод рационализации.

2. Решить неравенства данным методом.

Метод рационализации заключается в замене сложного выражения F(x) на более простое выражение G(x), при которой неравенство G(x) v 0 равносильно неравенству F(x) v 0 на области определения выражения F(x) (символ "v" заменяет один из знаков неравенств: ≤, ≥, >,

Выделим некоторые типовые выражения F и соответствующие им рационализирующие выражения G (таблица 1), где f, g, h, p, q - выражения с переменной х (h>0, h≠1,f>0,g>0), a-фиксированное число (а>0, a≠1). (Приложение 2).

Пример № 1. Решить неравенство:

О.Д.З:

Ответ:

Пример № 2. Решить неравенство:

О.Д.З:

Учитывая область определения, получим

Ответ:

Вывод : неравенства с логарифмами по переменному основанию вызывают наибольшую сложность. Метод рационализации позволяет перейти от неравенства, содержащего сложные показательные, логарифмические и т.п. выражения, к равносильному ему более простому рациональному неравенству. Метод рационализации позволяет не только сэкономить время, но и снизить риск логических и вычислительных ошибок.

Исследование № 3

Цель : в процессе решения неравенств сравнить различные методы.

Ход работы:

1. Решить неравенство разными методами.

2. Сравнить результаты и сделать вывод.

Пример № 1. Решить неравенство

Решение:

1 способ. Алгебраический метод

Решение первой системы:

Решаем второе неравенство второй системы:

2 способ . Использование области определения функции

Область определения:

Для этих значений х получаем:

Правая часть неравенства отрицательна на его области определения. Следовательно, неравенство справедливо при

Ответ:

3 способ. Графический метод

Вывод : решая неравенство алгебраическим методом я пришла к неравенству шестой степени, потратила много времени на его решение, но так и не смогла решить. Рациональный метод, по моему мнению, использование области определения функции или графический.

Пример № 2. Решить неравенство: .

Ответ:

Вывод: решить данное неравенство у меня получилось лишь благодаря методу рационализации.

Заключение

Анализ содержания школьных учебников показывает, что в большинстве из них методам решения неравенств с использованием свойств функций не уделяется должного внимания, а в заданиях ЕГЭ почти каждый год предлагаются неравенства, решение которых упрощается, если применить свойства функций.

Большинство учащихся решают неравенства с использованием стандартных, алгоритмических методов, что иногда приводит к громоздким вычислениям. В связи с этим процент выполнения задания № 15 на ЕГЭ невысок.

Область применения свойств функций при решении неравенств очень широка. Использование свойств (ограниченность, монотонность и др.) функций, входящих в неравенства, позволяет применить нестандартные методы решения. По нашему мнению, умение использовать необходимые свойства функций при решении неравенств могут позволить учащимся выбирать более рациональный способ решения.

В своей работе мы изучили функционально-графические методы решения неравенств. Сравнили различные методы решения неравенств. Проверили экспериментальным путем какой способ решения неравенств наиболее рациональный.

И пришли к выводу, что учащийся должен владеть несколькими способами решения неравенств, для того чтобы сэкономить время и снизить риск логических и вычислительных ошибок.

Задачи нашей работы выполнены, цель достигнута, гипотеза подтвердилась.

Литература:

  1. Алимов Ш. А, Колягин Ю. М., Сидоров Ю. В. и др. Алгебра и начала анализа: Учебник для 10-11 кл. общеобразоват. учреждений / Ш. А. Алимов, Ю. М. Колягин, Ю. В. Сидоров и др. – 15-е изд. – М.: Просвещение, 2007. – 384 с.
  2. Корянов А.Г., Прокофьев А.А. Материалы курса «Готовим к ЕГЭ хорошистов и отличников»: лекции 1-4. - М.: Педагогический университет «Первое сентября», 2012. – 104 с.
  3. Сайт http://www.fipi.ru/.
  4. Сайт https://ege.sdamgia.ru/.
  5. Ященко И. В. ЕГЭ. Математика. Профильный уровень: типовые экзаменационные варианты: 36 вариантов / под ред. И. В. Ященко. - М.: Издательство «Национальное образование», 2018. - 256 с.
Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Исследование различных методов решения неравенств Иванова Анастасия Евгеньевна МБОУ «СШ № 30 с углубленным изучением отдельных предметов»

Результаты выполнения задания № 15 обучающимися нашей школы

Результаты выполнения задания № 15 на пробном экзамене в 2017-2018 уч. году обучающимися нашей школы

Гипотеза: если ученик будет владеть несколькими способами решения неравенств, то он сможет выбрать наиболее рациональный Объект исследования: неравенства Предмет исследования: различные способы решения неравенств

Цель: изучить различные способы решения неравенств. Для достижения поставленной цели решались следующие задачи: Изучить теоретический материал по данной теме. Рассмотреть примеры, предложенные в банке заданий ЕГЭ на сайте Федерального института педагогических измерений. Изучить функционально-графические методы решения неравенств. Сравнить различные методы решения неравенств. Проверить экспериментальным путем какой способ решения неравенств наиболее рациональный.

Исследование № 1 Цель: изучить метод ограниченности функций. Ход работы: 1. Изучить метод ограниченности функций. 2. Решить неравенства данным методом. Пример № 1 . Решить неравенство: Решение: Область определения: Для всех х из полученного множества имеем: Следовательно, решение неравенства Ответ:

Пример №2. Решить неравенство: Решение: Т.к. Данное неравенство равносильно Первое уравнение системы имеет один корень х = - 0,4, который удовлетворяет и второму уравнению. Ответ: - 0,4 Вывод: данный метод наиболее эффективен, если в неравенстве содержатся такие функции, как и другие, области значений которых ограничены сверху или снизу.

Исследование № 2 Цель: изучить метод рационализации решения неравенств. Ход работы: 1. Изучить метод рационализации. 2. Решить неравенства данным методом. Пример № 1. Решить неравенство: О.Д.З: Учитывая область определения, получим Ответ:

Пример № 2. Решить неравенство: О.Д.З: Учитывая область определения, получим Ответ: Вывод: неравенства с логарифмами по переменному основанию вызывают наибольшую сложность. Метод рационализации позволяет перейти от неравенства, содержащего сложные показательные, логарифмические и т.п. выражения, к равносильному ему более простому рациональному неравенству. Метод рационализации позволяет не только сэкономить время, но и снизить риск логических и вычислительных ошибок.

Исследование № 3 Цель: в процессе решения неравенств сравнить различные методы. Ход работы: 1. Решить неравенство разными методами. 2. Сравнить результаты и сделать вывод. Пример № 1. Решить неравенство 1 способ. Алгебраический метод Решение первой системы: Решаем второе неравенство второй системы: 2 способ. Использование области определения функции Область определения: Для этих значений х получаем: Правая часть неравенства отрицательна на его области определения. Следовательно, неравенство справедливо при

3 способ. Графический метод Вывод: решая неравенство алгебраическим методом я пришла к неравенству шестой степени, потратила много времени на его решение, но так и не смогла решить. Рациональный метод, по моему мнению, использование области определения функции или графический.

Пример № 2. Решить неравенство: Ответ: Вывод: решить данное неравенство у меня получилось лишь благодаря методу рационализации.

Область применения свойств функций при решении неравенств очень широка. Использование свойств (ограниченность, монотонность и др.) функций, входящих в неравенства, позволяет применить нестандартные методы решения. По нашему мнению, умение использовать необходимые свойства функций при решении неравенств могут позволить учащимся выбирать более рациональный способ решения. В своей работе мы изучили функционально-графические методы решения неравенств. Сравнили различные методы решения неравенств. Проверили экспериментальным путем какой способ решения неравенств наиболее рациональный. И пришли к выводу, что учащийся должен владеть несколькими способами решения неравенств, для того чтобы сэкономить время и снизить риск логических и вычислительных ошибок. Задачи нашей работы выполнены, цель достигнута, гипотеза подтвердилась.

Спасибо за внимание!

В стандартном курсе школьной математике свойства функций применяются в основном для построения их графиков. Функциональный метод решения уравнений применяют тогда и только тогда, когда уравнение F(x) = G(x) в результате преобразований или замены переменных не может быть приведено к тому или иному стандартному уравнению, имеющему определенный алгоритм решения.

В отличие от графического метода, знание свойств функций позволяет находить точные корни уравнения, при этом не требуется построения графиков функций. Использование свойств функций способствует рационализации решения уравнений.

В работе рассмотрены следующие свойства функции: область определения функции; область значений функции; свойства монотонности функции; свойства выпуклости функции; свойства четности и нечетности функции.

Цель работы: провести некоторую классификацию нестандартных уравнений по использованию общих свойств функций, описать суть каждого свойства, дать рекомендации по его использованию, указания к применению.

Вся работа сопровождается решением конкретных задач, предлагавшихся на ЕГЭ различных лет.

Глава 1. Использование понятия области определения функции.

Введем несколько ключевых определений.

Областью определения функции y = f(x) называется множество значений переменной х, при которых функция имеет смысл.

Пусть дано уравнение f(x) = g(x), где f(x) и g(x)- элементарные функции, определенные на множествах D1, D2. Тогда областью D допустимых значений уравнения будет множество, состоящее из тех значений х, которые принадлежат обоим множествам, то есть D = D1∩ D2. Ясно, что когда множество D пустое (D= ∅), то уравнение решений не имеет. (Приложение № 1).

1. arcsin (x+2) +2x- x2 = x-2.

ОДЗ:-1 =0⇔-3

Ответ: решений нет.

2. (х2-4х+3 +1)log5х5 + 1х(8х-2х2-6 + 1) = 0.

ОДЗ: х2-4х+3>=0,х>0,8х-2х2-6>=0⇔х∈(-infinity;1∪ 3;infinity),х>01

Проверка: х = 1.

(1-4+3 +1)log515 + (8-2-6 + 1) = 0,

0 = 0 - верно.

х = 3. (9-12+3+1)log535 +13(24-18-6+1) = 0, log535 +13 = 0 - неверно.

Часто оказывается достаточным рассмотреть не всю область определения функции, а лишь ее подмножество, на котором функция принимает значения, удовлетворяющие некоторым условиям (например, только неотрицательные значения).

1. x+27-x(x-9 +1) = 1.

ОДЗ: x-9>=0, x>=9.

При x>=9 x+2>0, 7-x 0, таким образом, произведение трех сомножителей, стоящих в левой части уравнения отрицательно, а правая часть уравнения положительна, значит, уравнение решений не имеет.

Ответ: ∅.

2. 3-x2+ x+2 = x-2.

ОДЗ: 3-x2>=0,x+2>=0,⇔ 3-x(3+x)>=0,x>=-2,⇔ -3=-2,⇔

На множестве допустимых значений левая часть уравнения - положительна, а правая - отрицательна, значит, уравнение решений не имеет.

Ответ: решений нет.

Глава 2. Использование понятия области значений функции.

Областью значений функции y = f(x) называется множество значений переменной y при допустимых значениях переменной x.

Функция y = f(x) называют ограниченной снизу (соответственно сверху) на множестве Х, если существует такое число М, что на Х выполняется неравенство fx>=М (соответственно fx

Функция y = f(x) называется ограниченной на данном промежутке (содержащемся в области ее определения), если существует такое число М >0, что при всех значениях аргумента, принадлежащих данному промежутку, имеет место неравенство f(x)

Пусть дано уравнение f(x) = g(x), где g(x) - элементарные функции, определенные на множествах D1, D2. Обозначим область изменения этих функций соответственно E1 и E2. Если х1 является решением уравнения, то будет выполняться числовое равенство f(x1) = g(x1), где f(x1) значение функции f(x) при х = х1, а g(x1) - значение функции g(x) при х = х1. Значит, если уравнение имеет решение, то области значений функций f(x) и g(x) имеют общие элементы (Е1∩Е2 !=∅). Если же таких общих элементов множества Е1 и Е2 не содержат, то уравнение решений не имеет.

Для оценки выражений используются базовые неравенства. (Приложение №2).

Пусть дано уравнение f(x) = g(x). Если f(x)>=0 и g(x)

1. x2+2xsinxy+1=0.

Решение. В левой части есть единица, значит, можно воспользоваться основным тригонометрическим тождеством: x2+ 2xsinxy+ sin2xy+cos2xy=0.

Сумма первых трех членов представляет собой полный квадрат:

(x+sinxy)2+cos2xy =0.

Следовательно, в левой части сумма квадратов, она равна нулю тогда, когда одновременно равны нулю выражения, стоящие в квадратах. Запишем систему: cosxy=0,x+sinxy=0.

Если cosxy=0, то sinxy= +-1, поэтому эта система равносильна совокупности двух систем: x+1=0,cosxy=0 или x-1=0,cosxy=0.

Их решениями являются пары чисел х=1, у = PI 2 + PIm, m∈Z, и x=-1, y = = PI 2 + PIm, m∈Z.

Ответ: х=1, у = PI 2 + PIm, m∈Z, и x=-1, y = = PI 2 + PIm, m∈Z.

Если на промежутке Х наибольшее значение одной из функций y = f(x), y = g(x) равно А и наименьшее значение другой функции тоже равно А, то уравнение f(x) = g(x) равносильно на промежутке Х системе уравнений fx=А,gx=А.

1. Найдите все значения a, при которых имеет решение уравнение

2cos222x-x2=a+3sin(22x-x2+1).

После замены t= 22x-x2 приходим к уравнению cos(2t+PI3)=a-12.

Функция t=2mвозрастает, значит, она достигает своего наибольшего значения при наибольшем значении m. Но m=2х - х имеет наибольшее значение, равное 1. Тогда tнаиб = 22·1-1=2. Таким образом, множеством значений функции t= 22x-x2является промежуток (0;2, а функции cos(2t+PI3)- промежуток -1;0,5). Следовательно, исходное уравнение имеет решение для тех и только тех значений a, которые удовлетворяют неравенствам -1Ответ: -12. Решить уравнение (log23)x+a+2 = (log94)x2+a2-6a-5.

Воспользовавшись очевидными неравенствами

Ответ: x= - 5+32, если a=1+32 и x=-5+32, если a= 1-32.

Можно подробнее рассмотреть и другие уравнения. (Приложение №3).

Глава 3. Использование свойства монотонности функции.

Функцию y = f(x) называют возрастающей (соответственно убывающей) на множестве Х, если на этом множестве при увеличении аргумента увеличиваются (соответственно уменьшаются) значения функции.

Иными словами, функция y = f(x) возрастает на множестве Х, если из х1∈Х, х2∈Х и х1Она убывает на этом множестве, если из х1∈Х, х2∈Х и х1 f(x2).

Функцию y = f(x) называют нестрого возрастающей (соответственно нестрого убывающей) на Х, если из х1∈Х, х2∈Х и х1=f(x2)).

Функции, возрастающие и убывающие на Х, называют монотонными на Х, а функции, нестрого возрастающие или нестрого убывающие на Х, называют нестрого монотонными на Х.

Для доказательства монотонности функций используются следующие утверждения:

1. Если функция f возрастает на множестве Х, то для любого числа С функция f+С тоже возрастает на Х.

2. Если функция f возрастает на множестве Х и С > 0, то функция Сf тоже возрастает на Х.

3. Если функция f возрастает на множестве Х, то функция - f убывает на этом множестве.

4. Если функция f возрастает на множестве Х и сохраняет знак на множестве Х, то функция 1f убывает на этом множестве.

5. Если функции f и g возрастают на множестве Х, то их сумма f+g тоже возрастает на этом множестве.

6. Если функции f и g возрастают и неотрицательны на множестве Х, то их произведение fg тоже возрастает на Х.

7. Если функция f возрастает и неотрицательна на множестве Х и n - натуральное число, то функция fn тоже возрастает на Х.

8. Если обе функции f(x) и g(x) возрастающие или обе убывающие, то функция h(x) = f(g(x)) - возрастающая функция. Если одна из функций возрастающая. А другая убывающая, то h(x) = f(g(x)) - убывающая функция.

Сформулируем теоремы об уравнениях.

Теорема 1.

Если функция f(x) монотонна на промежутке Х, то уравнение f(x) = С имеет на промежутке Х не более одного корня.

Теорема 2.

Если функция f(x) монотонна на промежутке Х, то уравнение f(g(x)) = f(h(x)) равносильно на промежутке Х уравнению g(x) = h(x).

Теорема 3.

Если функция f(x) возрастает на промежутке Х, а g(x) убывает на промежутке Х, то уравнение g(x) = f(x) имеет на промежутке Х не более одного корня.

Теорема 4.

Если функция f(x) возрастает на промежутке Х, то уравнение f(f(x)) = x равносильно на промежутке Х уравнению f(x) = х.

1. Найдите все значения a, при которых имеет ровно три корня уравнение

4-x-alog3(x2-2x+3)+2-x2+2xlog13(2x-a+2)=0.

Решение. Преобразуем данное уравнение к виду

2x2-2xlog3(x2-2x+3)= 22x-a-1log3(2x-a+2).

Если положить u = x2-2x, v=2x-a-1, то придем к уравнению

2ulog3(u+3)= 2vlog3(v+3).

Функция f (t) = 2tlog3(t+3) монотонно возрастает при t >-2, поэтому от последнего уравнения можно перейти к равносильному u = v, x2-2x = 2x-a-1⇔(x-1)2=2x-a.

Это уравнение, как видно из рисунка, имеет ровно три корня в следующих случаях:

1. Вершина графика функции у = 2x-a располагается в вершине параболы у = (x-1)2, что соответствует a = 1;

2. Левый луч графика у = 2x-a касается параболы, а правый пересекает ее в двух точках; это возможно при a=12;

3. Правый луч касается, а левый - пересекает параболу, что имеет место при a=32.

Поясним второй случай. Уравнение левого луча у = 2a-2x, его угловой коэффициент равен -2. Следовательно, угловой коэффициент касательной к параболе равен

2(х -1) = -2 ⇒ х = 0 и точка касания имеет координаты (0; 1). Из условия принадлежности этой точки лучу находим a=12.

Третий случай можно рассмотреть аналогично или привлечь соображения симметрии.

Ответ: 0,5; 1;1,5.

Можно рассмотреть подробнее и другие уравнения. (Приложение №4).

Глава 4. Использование свойств выпуклости.

Пусть функция f(x) определена на промежутке Х она называется строго выпуклой вниз (вверх) на Х, если для любых u и v из Х, u!=v и 0

Геометрически это означает, что любая точка хорды ВС (то есть отрезка с концами в точках B(u;f(u)) и C(v;f(v)), отличная от точек В и С, лежит выше (ниже) точки А графика функции f(x), соответствующей тому же значению аргумента. (Приложение №5).

Функции строго выпуклые вверх и вниз называются строго выпуклыми.

Справедливы следующие утверждения.

Теорема 1.

Пусть функция f(x) является строго выпуклой вниз на промежутке Х, u ,v ∈X, u

Из теоремы 1 вытекает следующее утверждение.

Теорема 2.

Если функция f(x) является строго выпуклой на промежутке Х, функции u = u(x), v = v(x), u1=u1(x), v1 = v1(x) такие, что при всех х из ОДЗ уравнения f(u)+f(v) = f(u1) + f(v1) (1) их значения u(x), v(x), u1(x), v1(x) содержатся в Х и выполнено условие u+v = u1 +v1, то уравнение f(u)+f(v) = f(u1) + f(v1) (2) на ОДЗ равносильно совокупности уравнений u (x) = u1(x), u(x) = v1(x) (3).

1. 41-sin4x+41-cos4x=412.

Решение. Если положим fx= 41-x2, u=cos2x, v=sin2x, u1=v1=12, то данное уравнение запишется в виде (1). Поскольку f"x= -x24(1-x2)3, f""x=-2+x244(1-x2)7, то функция fx является строго выпуклой вверх на сегменте -1;1. Очевидно, что выполнены остальные условия теоремы 2 и, следовательно, уравнение равносильно уравнению cos2x = 0,5, х = PI4 +PIk2, где k∈Z.

Ответ: х = PI4 +PIk2, где k∈Z.

Теорема 3.

Пусть функция fx является строго выпуклой на промежутке Х и u,v, λv+(1-λ)u∈X. Тогда равенство f (λv+(1-λ)u) = λf(v)+(1-λ)f(u) (4) справедливо в том и только и том случае, если либо u=v, либо λ=0, либо λ=1.

Примеры: sin2xcos3x+cos2xsin3x∙1+sin2xcos3x+cos2xsin3x= sin2xcos3x1+cos3x+cos2xsin3x1+sin3x.

Уравнение имеет вид (4), если fx=x1+x= x+x2, u=sin3x, v= cos3x, λ=sin2x.

Очевидно, что функция fx является строго выпуклой вниз на R. Следовательно, по теореме 3 исходное уравнение равносильно совокупности уравнений sinx=0, sin2x=1, cos3x=sin3x.

Отсюда получаем, что его решениями будут PIk2, PI12+PIn3, где k,n∈Z.

Ответ: PIk2, PI12+PIn3, где k,n∈Z.

Использование свойств выпуклости применяется при решении и более сложных уравнений. (Приложение № 6).

Глава 5. Использование свойств четности или нечетности функций.

Функция fx называется четной, если для любого значения х, взятого из области определения функции, значение - х также принадлежит области определения и выполняется равенство f-x= fx. Функция fx называется нечетной, если для любого значения х, взятого из области определения функции, значение - х также принадлежит области определения и выполняется равенство f-x=- fx.

Из определения следует, что области определения четной и нечетной функций симметричны относительно нуля (необходимое условие).

Для любых двух симметричных значений аргумента из области определения четная функция принимает равные числовые значения, а нечетная - равные по абсолютной величине, но противоположного знака.

Теорема 1.

Сумма, разность, произведение и частное двух четных функций являются четными функциями.

Теорема 2.

Произведение и частное двух нечетных функций представляют собой четные функции.

Пусть имеем уравнение F(x)=0, где F(x) - четная или нечетная функция.

Чтобы решить уравнение F(x) = 0, где F(x) - четная или нечетная функция, достаточно найти положительные (или отрицательные) корни, симметричные полученным, и для нечетной функции корнем будет х = 0, если это значение входит в область определения F(x). Для четной функции значение х = 0 проверяется непосредственной подстановкой в уравнение.

В обеих частях уравнения имеем четные функции. Поэтому достаточно найти решения для x>=0. Так как x=0 не является корнем уравнения, рассмотрим два промежутка: (0;2, 2;infinity.

а) На промежутке (0;2 имеем:

8x= 2x+2-x+2, 23x=24, x= 43.

b) На промежутке 2;infinity имеем:

8x= 2x+2+x-2,23x=22x, x=0.

Но так как х = 0 не является корнем уравнения, то для х>0 данное уравнение имеет корень x= 43. Тогда x=- 43 также является корнем уравнения.

Ответ: 43; - 43.

Автор полагает, что работа может быть использована учителями и учащимися общеобразовательных типов на факультативных занятиях, при подготовке к математическим олимпиадам, сдаче ЕГЭ, вступительным экзаменам в технические учебные заведения.