Как зарядить аккумулятор автомобиля в домашних условиях. Заряжаем аккумулятор правильно. Несколько хороших советов для подготовки к зиме Устройство для поддержания заряда аккумулятора

Капельная зарядка

Несмотря на существующее мнение, капельная зарядка никак не способствует продолжительной работе аккумуляторов. При данном способе зарядки ток не отключается даже после полной зарядки аккумулятора. По этой причине ток и выбирается малым. Даже если вся энергия, передаваемая аккумулятору, превращается в тепло, при малом токе аккумулятор не сможет достаточно нагреться. Для Ni-MH аккумуляторов, которые более негативно реагируют на перезарядку, чем Ni-Cd, ток заряда рекомендуется устанавливать максимум 0,05C. Для зарядки аккумулятора большей емкости ток капельной зарядки следует установить больше. Отсюда следует, что, аккумуляторы малой емкости нельзя заряжать в устройствах, предназначенных для заряда аккумуляторов большой емкости из-за опасности сильного нагрева и сокращения срока службы аккумулятора. Если аккумулятор большой емкости установить в зарядное устройство для аккумуляторов малой емкости, то он может не зарядиться полностью. Находясь в таких условиях долго, аккумуляторы начинают терять емкость.

К сожалению, надежно определить конец капельной зарядки невозможно. При низких токах зарядки профиль напряжения является плоским и характерный максимум в конце зарядки практически не достигается. Температура плавно растет и единственным методом является ограничение времени процесса зарядки. Но для применения данного метода необходимо помимо точной емкости аккумулятора знать величину его начального заряда. Влияние начального заряда можно исключить единственным способом – полной разрядкой аккумулятора непосредственно перед его зарядкой. А это увеличивает длительность процесса зарядки и укорачивает время работы аккумулятора, которое зависит от количества циклов заряд-разряда. Следующей проблемой при вычислении времени капельной зарядки является достаточно низкий КПД данного процесса. КПД капельной зарядки не превышает 75% и зависит от большого количества факторов (температуры аккумулятора, его состояния и т.д.). Единственное преимущество капельной зарядки – простота реализации процесса (без контроля конца зарядки). Только в последнее время производители аккумуляторов отмечают, что капельная зарядка перестала вести к уменьшению емкости современных Ni-MH аккумуляторов.

Быстрая зарядка

Большая часть производителей Ni-MH аккумуляторов указывают характеристики своих аккумуляторов в случае быстрой зарядки током 1С. Существуют рекомендации не превышать 0.75C. «Умное» зарядное устройство само должно оценивать условия и при необходимости переходить к быстрому заряду. Быстрый заряд используется только при температуре от 0 до +40°C и с напряжением от 0,8 до 1,8В. КПД быстрой зарядки составляет около 90%, поэтому аккумулятор практически не нагревается. Но в конце зарядки КПД резко уменьшается и практически вся энергия, подводимая к аккумулятору превращается в тепло. Таким образом, происходит резкий рост температуры аккумулятора и внутреннего давления. Это вызывает открытие вентиляционных отверстий и утрату части содержимого аккумулятора. Кроме того, под воздействием высокой температуры меняется внутренняя структура электродов. Поэтому быструю зарядку аккумулятора важно прекращать вовремя. К счастью, есть достаточно надежные признаки, проверяя которые зарядное устройство способно это делать.

Работа быстрого зарядного устройства состоит из следующих фаз:

  1. Определение наличия аккумулятора.
  2. Квалификация аккумулятора (qualification).
  3. Пред-зарядка (pre-charge).
  4. Переход к быстрой зарядке (ramp).
  5. Быстраязарядка (fast charge).
  6. Дозарядка (top-off charge).
  7. Поддерживающая зарядка (maintenance charge).

Фаза определения наличия аккумулятора

На данном этапе обычно проверяется напряжение на выводах аккумулятора. Если напряжение оказывается выше 1.8В, то это значит, что аккумулятор не подключен к зарядному устройству или поврежден. Если обнаруживается меньшее напряжение, значит аккумулятор подключен, и можно переходить к зарядке.

Во всех фазах наряду с основными действиями производится проверка наличия аккумулятора. Это связано с тем, что аккумулятор может отсутствовать в зарядном устройстве. Если это произошло, то зарядное устройство из любой фазы должно перейти к проверке наличия аккумулятора.

Фаза квалификации аккумулятора

Зарядка аккумулятора начинается с фазы его квалификации. Данная фаза нужна для предварительной оценки начального заряда аккумулятора. Когда напряжение на аккумуляторе меньше 0,8В быструю зарядку производить нельзя, требуется дополнительная фаза предварительной зарядки. Если напряжение больше 0,8В, то фаза предварительной зарядки пропускается. На практике замечено, что аккумуляторы не разряжают ниже 1,0В, и фаза пред-зарядки практически никогда не используется.

Фаза пред-зарядки

Предназначена для первоначальной зарядки серьезно разряженных аккумуляторов. Значение тока предварительной зарядки необходимо выбирать от 0,1С до 0,3C. Пред-зарядка обязательно должна быть ограничена по времени. Длительная фаза пред-зарядки не требуется, так как у рабочего аккумулятора напряжение должно достаточно быстро достигать значения в 0.8В. Если напряжение не растет, то это означает, что аккумулятор поврежден и необходимо прерывать процесс зарядки.

В длительных фазах зарядки необходимо следить за температурой аккумулятора и прекращать зарядку, когда температура достигает критического значения. Для Ni-MH аккумуляторов максимально допустимая температура составляет 50°C. Также, как и в остальных фазах, следует проверять наличие аккумулятора.

Фаза перехода к быстрой зарядке

Когда напряжение на аккумуляторе доходит до отметки 0,8В, можно переходить к быстрой зарядке. Не рекомендуется сразу использовать большой зарядный ток. Включать большой ток в начале зарядки не рекомендуется. Необходимо плавное увеличение силы тока в течении 2-4 минут до достижения заданного значения тока быстрой зарядки.

Фаза быстрой зарядки

Зарядный ток устанавливается от 0,5-1,0C. В данной фазе важным является точное определение момента ее окончания. Если фаза быстрой зарядки не будет вовремя прекращена, то аккумулятор разрушится. Поэтому для определения точного времени окончания быстрой зарядки необходимо использовать несколько независимых критериев.

Для Ni-Cd аккумуляторов обычно применяется –dV метод. Во время зарядки напряжение растет, в конце зарядки начинается уменьшение. Для Ni-Cd аккумуляторов признаком окончания зарядки является уменьшение напряжения примерно на 30мВ (для каждого аккумулятора). Метод –dV является самым быстрым и прекрасно работает даже для не полностью заряженных аккумуляторов. Если при помощи этого метода начать зарядку полностью заряженного аккумулятора, то напряжение на нем будет быстро расти, а затем резко уменьшаться, что и вызовет окончание процесса зарядки.

Для Ni-MH аккумуляторов метод работает не столь успешно, так как уменьшение напряжения для них выражается менее заметно. При зарядных токах менее 0,5C максимум напряжения, как правило, не достигается, поэтому зарядное устройство для аккумуляторов малой емкости, часто не может правильно определять окончание зарядки аккумуляторов крупной емкости.

Из-за незначительного снижения напряжения в конце зарядки необходимо повышать чувствительность, что может приводить к досрочному прекращению быстрой зарядки из-за возникающих помех, которые генерируются зарядным устройством, а также проникают из питающей сети. Именно поэтому не следует проводить зарядку аккумуляторов в автомобиле, по причине того, что бортовая сеть, как правило, имеет слишком высокий уровень помех. Аккумулятор также является источником шумов. По этой причине при измерении напряжения следует применять фильтрацию. Поэтому в процессе измерения напряжения необходимо использовать фильтрацию.

При заряде батарей последовательно соединенных аккумуляторов, когда отдельные аккумуляторы различаются по степени заряда, надежность метода –dV заметно уменьшается. В указанном случае пик напряжения разных аккумуляторов достигается в разные моменты времени, при этом профиль напряжения смазывается.

Для Ni-MH аккумуляторов также используют метод dV=0, при котором вместо снижения напряжения детектируют плато на профиле напряжения. В этом случае о конце зарядке свидетельствует постоянное напряжение на аккумуляторе в течение нескольких минут.

Несмотря на все трудности при определении конца зарядки аккумулятора методом –dV, большинством производителей Ni-MH аккумуляторов этот метод определяется как основной для быстрой зарядки. В конце зарядки током 1С напряжение должно меняться от- 12мВ до -2,5 мВ.

Сразу после подключения большого зарядного тока напряжение может испытывать флуктуации, которые могут быть определены как уменьшение напряжения в конце зарядки. Для предотвращения ложного прекращения процесса быстрой зарядки первое время (обычно 3-10 минут) после подключения зарядного тока контроль –dV необходимо отключать.

Вместе с уменьшением напряжения в конце зарядки начинается рост температуры и давления внутри аккумулятора. Таким образом, время завершения зарядки можно определить по росту температуры. Тем не менее, из-за влияния окружающей среды не рекомендуется устанавливать абсолютный температурный порог для определения момента окончания зарядки. Чаще используют не саму температуру, а скорость ее изменения. При зарядном токе в 1С зарядку необходимо завершать, когда скорость роста температуры достигает 1°C/мин. Следует отметить, что при зарядных токах менее 0,5C скорость роста температуры практически не меняется и указанный критерий использовать нельзя.

Оба рассмотренных метода вызывают незначительный перезаряд аккумулятора, что приводит к снижению срока его службы. Для обеспечения полного заряда аккумулятора, завершение процесса зарядки следует проводить с помощью малого тока и при низкой температуре аккумулятора (при повышенных температурах способность аккумуляторов принимать заряд серьезно уменьшается). Поэтому фазу быстрой зарядки советуют завершать немного раньше.

Существует так называемый inflexion метод для определения времени окончания быстрой зарядки. Суть метода заключается в том, что анализируется максимум производной напряжения по времени. Быстрая зарядка прекращается в тот момент, когда скорость роста напряжения достигает максимального значения. Этот способ дает возможность завершить этап быстрой зарядки раньше, чем температура успевает значительно подняться. Этот метод требует измерения напряжения с высокой точностью и математических вычислений.

Некоторые зарядные устройства используют импульсный зарядный ток. Импульсы тока имеют длительность порядка 1с, а промежуток между импульсами – порядка 20-30 мс. Среди преимуществ этого метода можно отметить лучшее выравнивание концентрации активных веществ по всему объему и меньшую вероятность появления кристаллических образований на электродах. Точных сведений об эффективности такого метода нет, но известно что, вреда он не приносит.

В процессе определения окончания быстрого заряда аккумулятора необходимо точно измерять напряжение. Если эти измерения производить под током, то из-за сопротивления контактов будет появляться дополнительная погрешность. По этой причине на время измерения зарядный ток отключают. После выключения тока следует делать паузу 5-10 мс, пока устанавливается напряжение на аккумуляторе. Далее проводится измерение. Для качественной фильтрации помех сетевой частоты, как правило, проводится ряд последовательных выборок на интервале, величиной в один период сетевой частоты (20 мс), а затем производится цифровая фильтрация.

Был разработан еще один метод заряда импульсным током, под названием FLEX negative pulse charging или Reflex Charging. Он отличается от обычного импульсного заряда наличием импульсов разрядного тока в промежутках между импульсами тока зарядки. При импульсах тока зарядки порядка 1с длительность импульсов разрядного тока выбирается примерно 5мс. Величина разрядного тока превышает ток зарядки в 1-2,5 раз.

Из преимуществ метода следует упомянуть более низкую температуру аккумулятора в процессе зарядки и способность устранять кристаллические образования крупного размера на электродах. Корпорацией General Electric были проведены независимые исследования этого метода, которые говорят о том, что метод не приносит ни пользы, ни вреда.

Так как правильное определение окончания быстрого заряда является чрезвычайно важным, зарядное устройство должно использовать несколько методов определения конца зарядки сразу. Также, необходимо проводить проверки некоторых дополнительных условий аварийного прекращения быстрой зарядки. Во время быстрой зарядки следует контролировать температуру аккумулятора и прерывать процесс в случае достижения критического значения. Для быстрой зарядки ограничение по температуре является более жестким, чем для всего процесса зарядки. Поэтому, когда температура достигает +45°C необходимо аварийно прекращать быструю зарядку и переходить к фазе дозарядки меньшим зарядным током. Перед продолжением зарядки температура аккумулятора должна уменьшиться, так как при повышенной температуре способность аккумулятора к принятию заряда существенно снижается.

Еще одно дополнительное условие – ограничение быстрой зарядки по времени. Зная зарядный ток, емкость аккумулятора и КПД зарядки можно вычислить время, необходимое для полной зарядки. Таймер быстрой зарядки нужно устанавливать на время, превосходящее расчетное на 5-10%. Если это время зарядки закончилось, но ни один из способов определения окончания быстрой зарядки не сработал, то процесс аварийно прекращается. Подобная ситуация с большой долей вероятности свидетельствует о неисправности каналов измерения напряжения и температуры.

Фаза дозарядки

Зарядный ток устанавливается в пределах 0,1-0,3C. При токе дозарядки 0,1C производители рекомендуют производить дозарядку в течение 30мин. Проведение более длительной дозарядки приводит к перезаряду аккумулятора; емкость аккумулятора увеличивается на 5-6%, но количество циклов заряд-разряда сокращается на 10-20%. Положительным эффектом процесса дозарядки является выравнивание заряда аккумуляторов батареи. Те из них, которые заряжены полностью, рассеивают подводимую энергию в виде тепла одновременно с зарядкой остальных аккумуляторов. Если фаза дозарядки следует сразу после фазы быстрой зарядки, то в течение нескольких минут необходимо дать аккумуляторам остыть. С повышением температуры аккумулятора, его способность принимать заряд существенно падает. При температуре 45°C аккумулятор может принимать только 75% заряда. Поэтому процесс дозарядки, проводимый при комнатной температуре, дает возможность провести наиболее полную зарядку аккумулятора.

Фаза поддерживающей зарядки

Зарядные устройства для Ni-Cd аккумуляторов после процесса зарядки, как правило, переходят в режим капельного заряда с целью поддержания аккумулятора в состоянии полного заряда. Таким образом, температура аккумулятора все время остается повышенной, а это существенно уменьшает срок службы аккумулятора. Ni-MH аккумуляторы плохо переносят перезаряд, и поэтому для них нежелательно находиться в состоянии капельной зарядки. Необходимо использовать очень низкий ток поддерживающей зарядки, для того, чтобы только компенсировать самозаряд.

Для Ni-MH аккумуляторов саморазряд в первые 24 часа может составлять до 15% емкости аккумулятора, а затем саморазряд уменьшается и составляет 10-15% емкости аккумулятора в месяц. Для компенсации саморазряда достаточно среднего тока менее 0,005C. Некоторые устройства включают поддерживающий зарядный ток один раз в несколько часов, а в другое время аккумулятор отключен от устройства. Величина саморазряда серьезно зависит от температуры, поэтому лучший вариант – сделать поддерживающий заряд адаптивным – чтобы небольшой зарядный ток подключался только тогда, когда обнаруживалось заданное уменьшение напряжения.

Фазу поддерживающей зарядки можно не проводить, но если между зарядкой и использованием аккумулятора проходит длительное время, то перед использованием аккумулятор необходимо подзаряжать, для того, чтобы компенсировать саморазряд. Лучшим вариантом является тот, при котором зарядное устройство поддерживает полный заряд аккумуляторов.

Сверхбыстрый заряд

При заряде до 70% емкости аккумулятора КПД процесса зарядки близок к 100%. Данный показатель является предпосылкой для создания сверхбыстрых зарядных устройств. Конечно, увеличивать ток заряда до бесконечности нельзя. Существует предел, обусловленный скоростью, с которой протекают химические реакции. На практике можно использовать зарядные токи до 10C. Чтобы аккумулятор не перегревался, после достижения уровня 70% заряда ток необходимо снижать до уровня стандартной быстрой зарядки производить контроль окончания зарядки стандартным способом. Необходимо точно контролировать достижение 70% отметки заряда. Пока надежных методов для решения этой задачи нет. Проблема заключается в определении степени заряда в батарее, в которой аккумуляторы могут быть по-разному разряженными. Также проблематично подводить к аккумуляторам зарядный ток. При столь высоких зарядных токах слабый контакт может вызвать дополнительное нагревание аккумулятора вплоть до его разрушения. В случае ошибок зарядного устройства возможен даже взрыв аккумулятора.

Схема зарядного устройства

Предлагаемое автоматическое устройство предназначено для зарядки автомобильных аккумуляторных батарей емкостью от 32 до 60 А*ч и поддержания их в заряженном состоянии.

Фирмы-производители рекомендуют осуществлять подзарядку батарей током, равным 0,04...0,06 от емкости аккумуляторной батареи в ампер-часах. По данным фирм, время зарядки батареи во многом зависит от зарядного тока - как при подзарядке в автомобиле, так и при зарядке от зарядного устройства.

В процессе зарядки напряжение на полюсах аккумуляторной батареи изменяется, и когда оно становится равным 2,3...2,35 В на ячейку (от 13,8 В до 14,1 В для батареи 12 В), батарея заряжена на 100%.
Ненагруженный аккумулятор саморазряжается за сутки примерно на 1 ...2% своей емкости. Если поверхность аккумулятора сильно загрязнена брызгами электролита, эта величина значительно возрастает.

Электрическая схема зарядного устройства сделана так, что при 100%-й зарядке аккумуляторной батареи она переключается в режим сохранения заряда, подавая слабый подзаряжающий ток (100...250 мА). Этот небольшой ток предотвращает саморазряд и сульфатацию.
Зарядное устройство питается от сети с напряжением 220 В +10% и -15%. Выпрямительный блок состоит из сетевого трансформатора (Т1) мощностью 100 Вт, выпрямительного моста В2М1 -5 и фильтрующего конденсатора С1.

Сопротивление резистора R1 зависит от емкости аккумуляторной батареи. Для аккумуляторной батареи емкостью 45 А*ч требуется ток 1 = 0,05-45 = 2,25 А.
Тогда резистор R1 должен иметь сопротивление примерно 1,8 Ом. Для аккумулятора емкостью 60 А*ч зарядный ток составляет 3 А, а сопротивление резистора R1 - 1,33 Ом. Резистор R1 наматывается на керамическом корпусе проводом диаметром 1 ...1,2 мм. Точная величина сопротивления R1 определяется тем, какая аккумуляторная батарея подсоединена к устройству. Устройство будет более универсальным, если заменить резистор R1 регулируемым сопротивлением (реостатом).

Блок отслеживания степени зарядки состоит из стабилизатора напряжения DA1, управляющего реле К1, транзистора VT1 (2Т9135) и триггера Шмитта (VT2, VT3), образующего пороговое устройство, отслеживающее
степень зарядки батареи. При достижении напряжения 13,9...14,1 В устройство переключается в режим поддержания заряда.

Согласно данным фирм-производителей аккумуляторов, такой режим допустим для всех распространенных типов свинцовых аккумуляторов.

Его преимущества:
- аккумулятор может быть подключен к зарядному устройству сколь угодно долго, и всегда находится в полностью заряженном состоянии;
- вследствие малости подзаряжающего тока, зарядное устройство не перегружается, а потребление тока от электросети минимально;
- нет необходимости в слежении за процессом зарядки.

Для указания режима работы зарядного устройства использованы два светодиодных индикатора. В процессе зарядки светится диод HL2 (зеленый), а в режиме сохранения заряда диод HL1 (синий или желтый).
Регулировка устройства на степень зарядки 100% осуществляется следующим образом. К полюсам аккумуляторной батареи подключается вольтметр с максимальным отклонением стрелки 20...30 В; при достижении напряжения 13,9... 14,1 В многооборотный потенциометр R13 устанавливается так, чтобы устройство перешло из режима зарядки в режим сохранения заряда. Эту операцию желательно
повторить несколько раз. На этом вся настройка завершается.

Выпрямительный элемент В2М1-5 устанавливается на ребристом радиаторе. Блок контроля, состоящий из интегральной схемы DA1, реле К1 (типа R15-12В, польского производства) и остальных элементов, монтируется на печатной плате. На транзистор VT1 крепится винтом М3 пластинчатый радиатор размерами 30x12x1 мм.
Все устройство монтируется в металлическом корпусе с отверстиями для вентиляции. Площадь отверстий должна быть примерно равна 0,5 площади корпуса.

Радио, телевизия, електроника, №9/98. Перевод А. Бельского.
“Радиолюбитель”, №7/1999, с. 18.
Скачать: Устройство для зарядки автомобильных аккумуляторов
В случае обнаружения "битых" ссылок - Вы можете оставить комментарий, и ссылки будут восстановлены в ближайшее время.

Проверяем устройства, сохраняющие заряд батарей при длительной стоянке. На испытаниях - восемь образцов.

О существовании подобных устройств многие даже не догадываются. Про зарядные устройства знают все, а вот какие-то подзарядные - что это? И в каких случаях они могут потребоваться?

К терминологии мы еще вернемся, а нужны эти «подзарядки» вот зачем. Представьте, что автомобиль неделями стоит в гараже без движения. Когда же он вдруг срочно понадобился, выясняется, чтобатарея подсела настолько, что крутить стартер не может. А если это случается постоянно?

В подобную ситуацию часто попадают автомобили, которые стоят на выставочных стендах. У них играет аудиосистема, горит свет, но мотор не работает. Вот и тянутся под капот тоненькие проводки, подпитывающие штатную батарею машины от внешнего источника.

Большие токи не нужны: достаточно компенсировать потребление штатных микроконтроллеров, а также охранной системы и телематики. У современных гаджетов аппетит скромный - десятки миллиамперов, при том что их аналоги прошлых лет выпуска потребляли порой на порядок больше.

Казалось бы, подключи зарядное устройство - и нет проблем! Но далеко не всякая «зарядка» рассчитана на постоянную работу в течение недель, а то и месяцев. Другое дело, если производитель указывает на подобную возможность использования своего продукта. Вот такие устройства мы и решили погонять в реальных условиях - в течение нескольких месяцев.

Из восьми приобретенных изделий только два являются чистой воды «подзарядками» - Торнадо и Moratti. Остальные - «зарядки», обещающие не только оживить севшие аккумуляторы, но и поддерживать их заряд на должном уровне. Именно эту функцию мы и оценивали в ходе испытаний.

ЧТО И ГДЕ ИСПЫТЫВАЛИ

Испытания проводили в лаборатории ФГКУ 3 ЦНИИ МО РФ в течение трех месяцев. Длительную проверку способности устройств компенсировать падение заряда вели на батареях энергоемкостью 55, 75 и 90 А·ч при температурах -20; 0; +25 ºС. Склонность к перегреву оценивали при работе с батареями от 75 до 190 А·ч, задавая максимально возможную нагрузку для каждого устройства. Для каждого изделия проверили «дуракоустойчивость» - использовали переполюсовку и т. п. При расстановке по местам учитывали заявленные параметры, качество изготовления, грамотность инструкции и удобство пользования.

Устройство Торнадо в «чужом» корпусе решили вскрыть. Собрано неплохо, но это уровень прошлого тысячелетия. Даты на радиоэлементах выдают себя сами.

ХРАНЕНИЕ? ПОДЗАРЯДКА? КОМПЕНСАЦИЯ?

Многомесячный марафон закончился удачно: ни одно из устройств не попросило пощады, ни одна батарея не пожаловалась на плохое обслуживание. «Защита от дурака» тоже на высоте: переполюсовок и прочих провокаций изделия не боятся. В то же время понравились далеко не все - на эту тему мы подробно высказались в подписях фотогалереи. Отметим также, что все устройства обеспечивают подзарядку в 20‑градусный мороз - даже те, которые, судя по инструкции, совсем не морозоустойчивые.

Но с проводами при этом нужно быть повежливее - они на глазах теряют гибкость.

Стоит ли искать в магазинах простенькие подзарядники, или лучше приобрести многофункциональное зарядное устройство? Мы считаем, что второй вариант предпочтительнее: разница в цене не космическая, а полноценный зарядник в хозяйстве не помешает. К тому же они практически всегда есть в продаже, а экзотических «братьев меньших» нужно выискивать через Интернет.

8. ЗАВОДИЛА АЗУ‑108 8 7 6

Автоматическое импульсное зарядное устройство , Санкт-Петербург

Ориентировочная цена, руб . 1280

Температурный диапазон, ºС 0 …+40

3–110

Симпатичное устройство неприятно резануло по глазам безграмотными надписями «А/ч» на лицевой панели, в инструкции и на упаковке. Такой единицы измерения нет в природе - есть А·ч. Требования изготовителя к температурным условиям работы устройства - от 0 до 40 ºС - не порадовали: а как же поддерживать заряд батареи, если на улице мороз? Исполнение неряшливое: приклеенные переключатели болтаются. В целом устройство работоспособно, но рекомендовать его не хочется.

7. Торнадо 3 А.02

Зарядный автомат-хранитель для аккумуляторных батарей , Тольятти

Ориентировочная цена, руб . 860

Температурный диапазон, ºС -20…+40

Энергоемкость заряжаемых батарей, А·ч до 75

Прибор обещает поддерживать рабочее со- стояние батареи «как угодно долго», не являясь полноценным зарядным устройством (разве что для батарей энергоемкостью ниже 10 А·ч). Внешне напоминает радиолюбительскую конструкцию в корпусе от реле времени для фотопечати. Элементная база - четвертьвековой давности. Все электрические проверки (испытания на перегрев проводили с батареей 75 А·ч) изделие успешно выдержало. Однако общее впечатление скорее негативное.

6. Moratti 01.80.005

Устройство для подзарядки аккумуляторных батарей , КНР

Ориентировочная цена, руб . 600

Температурный диапазон, ºС не ниже -10

Энергоемкость заряжаемых батарей, А·ч 10–250

Устройство предназначено не для зарядки батарей, а для поддержания работоспособности АКБ при длительном хранении и редком использовании. Длительный режим работы выдерживает спокойно; проверку на перегрев вели на батарее энергоемкостью 190 А·ч. Замечаний в адрес техники нет, а вот описание не понравилось: что такое «гелиевые» батареи? Может быть, имелись в виду гелевые?

5. СОНАР У3 207.03 3

Зарядное устройство , Санкт-Петербург

Ориентировочная цена, руб. 1500

Температурный диапазон, ºС -5…+35

Энергоемкость заряжаемых батарей, А·ч 10–180

Зарядное устройство обеспечивает режим хранения с компенсацией тока саморазряда. К сожалению, нижний температурный предел - всего лишь -5 ºС. Иными словами, на зимнюю работу в неотапливаемом гараже прибор не рассчитан. Корпус при работе не перегревается (проверку проводили с батареей энергоемкостью 170 А·ч). К технике претензий нет, однако цена показалась завышенной.

4. AIRLINE АСН‑5 А‑06

Зарядное устройство, Россия - КНР

Ориентировочная цена, руб . 1050

Температурный диапазон, ºС нет данных

Энергоемкость заряжаемых батарей, А·ч до 65

Предусматривает режим зарядки батареи, установленной на автомобиле. Проверку на перегрев проводили на батарее энергоемкостью 65 А·ч, поводов для замечаний не нашли. С подзарядом справляется успешно. К сожалению, мифическая единица измерения А/ч встречается в описании и этого прибора...

3. HEYNER, AkkuEnergy Арт. 927130

Зарядное устройство, Германия

Ориентировочная цена, руб . 6000

Температурный диапазон, ºС нет данных

Энергоемкость заряжаемых батарей, А·ч 30–190

Зарядное устройство, рассчитанное на длительное подключение к батарее независимо от сезона. Со всеми задачами справилось без проблем. Проверку на перегрев проводили с батареей 190 А·ч. Среди недостатков - заумное описание с неважным переводом и неаппетитная цена.

1–2. SMART POWER SP‑2N BERKUT

Компактное универсальное зарядное устройство , Россия - КНР

Ориентировочная цена, руб. 1150

Температурный диапазон, ºС -20…+50

Энергоемкость заряжаемых батарей, А·ч 4–80

Может быть использовано и для сезонного хранения АКБ, оставаясь подключенным к сети в течение нескольких месяцев. Режим длительной работы переносит спокойно; проверку на перегрев проводили с батареей 90 А·ч. «Дуракоустойчивость» нормальная, замечаний к работе нет.

1–2. СОРОКИН® 12.98

Универсальное зарядное устройство для аккумулятора, Россия

Ориентировочная цена, руб . 3000

Температурный диапазон, ºС -20…+50

Энергоемкость заряжаемых батарей, А·ч 6–160

Полноценное зарядное устройство. Может быть подключено к АКБ автомобиля на длительное время - для зимнего хранения и круглогодичного использования. При работе не перегревается (проверку проводили с батареей 170 А·ч). Замечаний нет. Разве что дороговато.

НЕМНОГО О БЕЗОПАСНОСТИ

Надолго оставляя в гараже зарядное устройство, подключенное к сети, убедитесь в том, что вы не схалтурили. Иными словами, вы должны быть уверены, что подключенные к клеммам подкапотного аккумулятора «крокодилы» ни при каких обстоятельствах не устроят вам короткое замыкание (например, при касании закрываемого капота!), а соответствующие провода не будут пережаты крышкой капота или иным способом. Да, проверенные нами устройства имеют встроенную защиту, но не стесняйтесь перепроверить себя лишний раз. Само собой разумеется, что зарядное устройство должно быть гарантированно защищено от прямого попадания влаги, снега и прочих погодных неприятностей. Следует также помнить, что при низких температурах изоляция проводов имеет привычку твердеть и даже ломаться. Это особенно важно учитывать в тех случаях, когда машиной время от времени пользуются, а зарядное устройство в спешке то отключают, то вновь подключают, не обращая внимания на подобные «мелочи».

К чему может привести повреждение изоляции плюсового провода, если тот случайно коснется «массы», всем понятно.

И последнее. Прежде чем трогаться с места, не забудьте отключить зарядное устройство от сети и от аккумулятора.

Свинцово-кислотные аккумуляторы, используемые в источниках бесперебойного питания устройств хранения информации при эксплуатации подвержены быстрому износу и преждевременному выходу из строя. Причиной является кристаллизация пластин, межэлектродные замыкания дендроидными отложениями на поверхности пластин, сульфатация.

Ёмкость и срок службы аккумуляторных батарей зависит от режима работы зарядного устройства, метода зарядки.

Прежде чем рассматривать желаемый режим заряда аккумулятора, следует проследить процесс разряда аккумулятора и причины его преждевременного выхода из строя.

Как правило разряд аккумулятора в системах бесперебойного питания в процессе эксплуатации происходит очень редко и на время в несколько минут, достаточного для вывода системы хранения данных из режима работы, для устранения сбоя. В винчестерах компьютеров за это время считывающая головка возвратится в исходное состояние, в ином случае могут быть испорчены загрузочные сектора и рабочая информация. В последующем потерянную информацию возможно частично восстановить, а полное использование жёсткого диска будет невозможным.

Отсутствие разрядной характеристики в работе аккумулятора приводит к его преждевременному выходу из строя.

Аккумуляторы в бесперебойных системах диагностируются внутренней схемой на соответствие напряжения на аккумуляторе заданным параметрам, при наличии сетевого напряжения устройство бесперебойного питания автоматически переводит питание нагрузки от сети. При потере питания сети устройство должно перейти в режим преобразования энергии аккумулятора в напряжение близкое по параметрам сетевому питанию.

Внешняя диагностика аккумулятора бесперебойного питания после эксплуатации подтверждает наличие высокого внутреннего сопротивления - ввиду высокой кристаллизации, высокий саморазряд при внутреннем замыкании пластин, вызванный сульфатацией. Высокое напряжение на электродах диагностируется внутренней схемой как полный заряд и аккумулятор далее не заряжается. Повышение напряжения заряда приводит к увеличению выделения тепла. Снижение ёмкости аккумулятора вызвано нерабочей сульфатацией поверхности пластин, ток нагрузки не в состоянии выйти из внутренних слоёв пористой структуры пластин аккумулятора и напряжение на выходе при нагрузке недопустимо падает, приводя к сбою в работе источника бесперебойного питания.

Небольшой расход энергии на выводе систем хранения информации из рабочего состояния не требует установки мощных автомобильных аккумуляторов, а для восполнения использованной энергии аккумулятора, мощных зарядных устройств.

Для зарядки аккумулятора и поддержания его в рабочем состоянии следует применить зарядное устройство с использованием двух методов зарядки: быстрого заряда и струйного (компенсационного) заряда.

Метод медленного заряда применяемый при зарядке аккумуляторов сотовых телефонов в данной ситуации неприемлем, как и на сотовых телефонах он приводит к кристаллизации пластин и выходу аккумулятора в неожиданный момент.

Батарея аккумулятора при этом методе не заряжается до конца или перегревается, с тепловым разрушением пластин. Системы хранения данных эксплуатируются более суток и аккумуляторы в устройствах поддержания напряжения должны находится в режиме дежурного подзаряда также продолжительное время.

Одной из причин выхода из строя аккумулятора является заряд постоянным током при отсутствии небольшого разрядного тока и отсутствия цикличности в режиме заряда. При разрядном токе ионы свинца успевают восстановиться до аморфного состояния с осаждением на поверхность пластин. В перерывах импульсов зарядного тока снижается температура аккумулятора.

Заряд аккумуляторов закрытого типа с гелиевым наполнителем должен отвечать следующим параметрам: ограничение напряжения заряда с целью снятия перезаряда и нагрева, автоматическое ограничение зарядного тока в начальный период быстрого заряда – это защитит регулятор тока от перегрузки и перегрева, а элементы аккумулятора от недопустимой величины зарядного тока, реализация струйного подзаряда импульсным током коротким по времени и амплитудой не ниже рекомендуемого изготовителем тока заряда. Среднее значение зарядного тока не превышает 0,05 С, где С - ёмкость аккумулятора.

Использование цикличности тока для регенерации пластин позволит поддерживать аккумулятор в рабочем состоянии сколько угодно долго. За короткое время снижается в десятки раз внутреннее сопротивление аккумулятора, восстанавливается ёмкость и рабочее напряжение.

Режим быстрого заряда характеризуется следующими параметрами:
Время заряда 1-2 часа, это достаточно для восстановления ёмкости аккумулятора, после аварийного включения бесперебойного питания, ток заряда 0,2-0,3 С, степень заряда батареи 100%.Полного отключения заряда не происходит - он переходит при достижении напряжения конца заряда в буферный режим струйного подзаряда. Конечное напряжение аккумулятора указано в паспорте или на корпусе, к примеру для аккумулятора Champion 12 Вольт 7 А/ч, установленный в устройство бесперебойного питания типа «АРС», составляет 13,3 -13,8 В при 20 градусах температуры корпуса. Характеристика зарядного тока крутопадающая - с повышением напряжения на аккумуляторе ток заряда падает приближаясь к минимальному значению в 0,03 -0,05 С - режиму струйного подзаряда. При отсутствии отключений электросети аккумулятор в заряженном состоянии может находиться сколько угодно долгое время в режиме ожидания. При технологии струйной подзарядки компенсируется расход ёмкости аккумулятора на поддержание работы схемы в дежурном режиме и саморазряд. Стабилизация напряжения заряда отрицательной обратной связью с аккумулятора на генератор импульсов зарядного тока позволяет поддерживать режим заряда в автоматическом режиме.

Характеристики зарядного устройства:
Напряжение сети 220 Вольт.
Максимальный ток заряда 650 мА.
Напряжение заряда 13,8 Вольт.
Аккумулятор 12 Вольт 1- 7а/ч.
Ток быстрого заряда 350-450 мА.
Ток струйного подзаряда 30- 40 мА.
Разрядный ток 22 мА.
Время заряда 1-2 часа.
Время подзаряда непрерывно.
Время аварийного режима 10-30 минут.
Мощность нагрузки 50 ватт.

В схему источника бесперебойного питания входит импульсное зарядное устройство, в котором постоянный зарядный ток преобразуется с помощью генератора на таймере в последовательность импульсов, а паузы между импульсами положительной полярности заполнены постоянным разрядным током отрицательной полярности. Аккумулятор нагружен разрядным током и во время зарядки, который используется для индикации подключения аккумулятора в схему.

Преобразователь тока выполнен на ключах полевых транзисторах с управлением от генератора сетевой частоты. При отсутствии сетевого напряжения выработанное преобразователем напряжение сетевой частоты и уровня поступает через реле на нагрузку, при наличии сетевого напряжения оно через контакты включенного в сеть реле поступает на нагрузку без преобразований.

В устройстве имеется световая индикация включения, полярности подключения аккумулятора, индикатор высокого напряжения и зарядки. Звуковой датчик указывает на отсутствие сетевого напряжения и предупреждает о принятии мер по выводу системы хранения информации из рабочего режима за короткое время по программе.

Аналоговый таймер DA1 (Рис.1) вырабатывает импульсы стабильной частоты в режиме автогенератора. Процесс заряд - разряда времязадающего конденсатора С1 будет проходить циклически, время заряда зависит от значения резистора R2 - Т1 =0.69 С1R2, время разряда более продолжительно T2 = 0.69C1 (R3+R4).

Полный период импульса равен Т=Т1+Т2. Частота автогенератора зависит от значения элементов R2,R3,R4, C1 - F=1/T. Скважность зависит от рабочего периода импульса D=T1/T. При снижении времени разряда уменьшением значения резистора R2 скважность увеличивается.

Диод VD1 формирует короткий импульс зарядного тока.
Резистор R3 позволяет установить ток заряда в соответствии с паспортными данными аккумулятора.
Питание таймера выполнено от аналогового стабилизатора DA2, диод VD2 позволяет защитить таймер и стабилизатор от неправильной полярности аккумулятора.

Напряжение таймера выбрано исходя из напряжения питания микросхемы DD1 –генератора преобразователя напряжения батареи питания.
Конденсаторы С2,С3,С4,С5 снижают уровень помех по цепям питания.

После подачи питания на таймер DA1 и внешние цепи конденсатор С1 начнёт заряжаться по экспоненте до напряжения 2/3 Un за время Т1, после чего внутренний компаратор таймера по входу 6 DA1 переключит внутренний триггер в противоположное состояние, откроется внутренний разрядный транзистор по выводу 7 DA1, конденсатор С1 начнёт разряжаться до уровня 1/3 Un за время Т2.

Зарядка аккумулятора произойдёт по такому же сценарию.
Вывод 5 в микросхеме таймера DA1 позволяет получить прямой доступ к точке делителя с уровнем 2/3 напряжения питания, являющейся опорной для работы верхнего компаратора. Использование данного вывода позволяет менять этот уровень для получения модификаций схемы, в данном случае, для установки выходного напряжения заряда на аккумуляторе GB1. В качестве ключевого переключателя тока в схему введён полевой транзистор N – типа, импульсы с выхода 3 таймера через резистор R5 поступают на затвор транзистораVT1, транзистор открывается и ток заряда с выпрямителя питания VD3 через ограничительный резистор R10 и предохранитель FU1 поступает на аккумулятор GB1. Индикатор HL3 указывает короткими световыми импульсами о процессе заряда аккумулятора, отсутствие свечения предупреждает об обрыве в цепи заряда аккумулятора или неисправном транзисторе VT1.

Наличие питания таймера DA1 индицируется светодиодом HL1 жёлтого свечения.
Светодиод HL2 в параллельном соединении с аккумулятором выполняет три обязанности, индицирует зелёным свечением правильную полярность подключения аккумулятора GB1 и является цепью разряда аккумулятора с током до 20 мА. При красном свечении светодиод указывает на аварийное состояние или неправильной полярности подключения аккумулятора в схему.

Напряжение отрицательной обратной связи с положительной шины аккумулятора через ограничительный резистор R7 и установочный резистор R8 подаётся на управляющий электрод регулируемого параллельного стабилизатора напряжения DA3 - интегральный аналог стабилитрона, способного формировать регулируемое образцовое
напряжение на выводе 5 таймера DA1.При повышении напряжения на аккумуляторе управляемый стабилитрон открывается и изменяется напряжение стабилизации.
Снижение напряжения на катоде (вывод 3 DA3) приводит к снижению напряжения в точке 5 DA1 прямого доступа делителя с уровнем 2/3 Un, что приведёт к повышению частоты генератора на таймере DA1 и снижению напряжения и зарядного тока аккумулятора GB1.

Пропадание сетевого напряжения вызывает отключение реле К1 с переключением контактов К1.1 и К1.2. Первые разрешают работу генератора на микросхеме DD1 подавая на вход R (вывод 5 DD1) низкого уровня, после запуска генератора на выходах T1 и Т2 сформируются прямоугольные импульсы частотой 50 Герц. Импульсы сдвинуты по фазе на четверть периода. Для преобразования импульсов прямоугольной формы в близкие к форме синусоиды на выходе трансформатора Т2 установлен конденсатор С7. Газоразрядный индикатор HL3 указывает на наличие высокого напряжения.

Применение полевых транзисторов не требует установки мощных радиаторов.
Большая часть радиодеталей схемы установлены на печатной плате, остальные закреплены в корпусе, использованном от блока питания компьютера. Бюджетный вентилятор В1 используется по прямому назначению.

Радиодетали схемы соответствуют таблице1.

Обозначение

Номинал

Замена

Примечание

проволочный

Остальные резисторы

Микросхема DA1

IRF3701,IRF3808.

ТП 114-7 16В 1А

ТТП-40,ТН-6О

РП-21-003УХЛ

Наладку схемы устройства следует начать с проверки источника питания +16 вольт и напряжения на выходе аналогового стабилизатора DA2. В отсутствии аккумулятора GB1 в схеме светодиод индикации тока заряда HL3 не горит, HL2 мигает с частотой генератора на таймере DA1, при подключении аккумулятора будет мигать светодиод заряда и гореть зелёным свечением индикатор полярности, при правильной полярности подключения аккумулятора, при неверной полярности светодиод загорит
красным свечением. Для установки зарядного тока в разрыв цепи аккумулятора подключить амперметр на ток до одного ампера, резистором R3 установить ток заряда в пределах 0,2С, а резистором R8 напряжение на аккумуляторе 13,3 вольта. После 1-2 часов заряда напряжение на аккумуляторе возрастёт до 13,8 вольта и ток упадёт до 0,1С, далее в режиме струйного подзаряда ток снизится до 0,03С.

Звуковой капсюль НА1 имеет внутренний генератор низкой частоты.
Отключив сетевое напряжение устанавливают резистором R14 частоту 50 Гц на конденсаторе С7.

На полевые транзисторы VT1-VT3 установить небольшие радиаторы размерами 10*50*10 мм.
Светодиоды индикации установить на корпусе со стороны противоположной вентилятору В1.

Литература:
1) В.Коновалов «Измерение R-вн АБ» «Радиомир» №8 2004 г стр.14
2) В.Коновалов, А.Разгильдеев.»Восстановление аккумуляторов» «Радиомир» №3 2005г. стр.7
3) В.Коновалов «Эффект памяти снимает вольтдобавка». «Радиомир» №10 2005 г. стр.13.
4) В.Коновалов «Зарядно- восстановительное устройство для Ni-Ca аккумуляторов» «Радио» №3 2006 г. стр.53.
5) Д.А.Хрусталёв «Аккумуляторы» Москва 2003г.
6) И.П.Шелестов «Радиолюбителям полезные схемы» книга 5.Москва 2003 г.
7) В.Коновалов «Ключевое зарядное устройство» «Радиомир» №9.2007г. стр13.
8) Микросхема КР142ЕН19. «Радио» №4.1994г.
9) Импульсное зарядное устройство «Радио» № 8.1995г. стр.61
10) Обслуживание «необслуживаемых» аккумуляторов, «Радиомир» №11.2001 г. стр.13.
11) М.Озолин «Простой источник бесперебойного питания».«Радио» №8.2005 г. стр.32.
12) С.Бирюков «Первичные кварцевые часы».«Радио» №6 2000г. стр34.
13) В.Коновалов «Регенератор аккумуляторных батарей».«Радиомир» №6.2008г стр.14.
14) В.Коновалов «Импульсная диагностика аккумуляторов».«Радиомир» №8 2008г. стр.15.

Затаив дыхание и скрестив пальцы, владельцы СТО ждут морозной зимы. Ведь, благодаря устойчивой холодной погоде прошлой зимой продажи аккумуляторов вышли за все мыслимые и немыслимые рамки. Но, даже не беря во внимание продажи аккумуляторов, СТО может получить дополнительную выгоду каждый раз, когда машину пригоняют на обслуживание и подготовку к зиме. Поставщик зарядных устройств для аккумуляторов, шведская компания «СТЕК», приводит несколько весомых аргументов для поддержания аккумулятора в заряженном состоянии, и работникам СТО стоит передавать эту информацию дальше по цепочке - своим клиентам.

Температура - это ключевой фактор для корректной работы аккумулятора. За пределами диапазона 20°С - 30°С, любая батарея испытывает дополнительные нагрузки, которые могут привести к сокращению ее срока службы.

При снижении температуры ниже 20°С, производительность аккумулятора снижается, вследствие сгущения электролита. В свою очередь, это приводит к замедлению химической реакции, необходимой для выработки энергии. Также сгущается и машинное масло, затрудняя пуск двигателя.

Однако, даже в самое холодное время, водитель вправе ожидать, что машина заведется с пол-оборота, а затем включает свет, обогрев заднего стекла, обогреватель и радио в нагрузку.

«Аккумуляторная батарея теряет до 35% своей мощности при снижении температуры до нуля, и более 50% при ее дальнейшем падении. Низкие температуры также требуют от двигателя дополнительного энергопотребления во время запуска - суммарно эти два фактора существенно увеличивают вероятность отказа батареи», - заявляют в СТЕК. Кроме того, срок службы аккумулятора укорачивают короткие поездки, во время которых двигатель не успевает разогреться.

В СТЕК поясняют: «Без должного обслуживания и ухода, зимой аккумулятор быстро теряет емкость, особенно при использовании авто для поездок на небольшие расстояния, и, как результат, отказ АКБ - это наиболее частая причина поломок в Великобритании на протяжении последних трех лет».

В прошлом году СТЕК рекомендовал СТО предлагать услуги по уходу за аккумулятором как одну из процедур по обслуживанию авто, и те компании, которые прислушались к рекомендации, получили благодарность от своих клиентов. В этом году, сделан следующий шаг - появилась возможность зарядки аккумулятора за ночь при использовании «умного» зарядного устройства СТЕК МХS 4003 . Это защищенное от смены полярности и искрения ЗУ, которое можно оставить подключенным к аккумулятору на «неограниченный период времени», заявляет компания.

«Заряжая батарею ночью, вы не только обеспечите ее полную работоспособность к утру, но и разогреете ее, так что химическая реакция, необходимая для утреннего запуска двигателя будет менее энергоемкой». Не каждый, тем не менее, использует свое авто в зимний период, особенно владельцы классических авто. Но в конце сезона загнать машину в гараж, выключить двигатель и просто уйти - недостаточно.

Проверьте свой аккумулятор:

  • Осмотрите АКБ на предмет трещин, и если они есть, обратитесь за услугами профессионального ремонта или замените батарею
  • Очистите все контакты и верхнюю плоскость корпуса
  • Очистите отсек для АКБ
  • Клеммы должны быть чистыми, сухими и смазанными для предотвращения коррозии
  • Используйте «умное» зарядное устройство для поддержания уровня заряда

Следуя этой процедуре, при наступлении весны машина будет гарантированно на ходу и не преподнесёт вам неприятных сюрпризов. «Эффективный уход за аккумулятором не должен занимать много времени или быть сложным с зарядным устройством СТЕК - все работает по принципу plug-and-play. Нет даже необходимости вынимать аккумулятор из авто или отключать его от бортовой сети.

«Умные» зарядные устройства СТЕК оптимизируют работу свинцово-кислотных аккумуляторов, считывая точные показатели уровня заряда, и обеспечивают адекватные действия по зарядке и поддержанию батареи в максимально работоспособном состоянии.

Расслоение электролита - тривиальная причина отказа аккумулятора. Электролит собирается на дне, а кислота в верхней части стает намного менее эффективной. Кроме того, избыточная концентрация электролита на дне приводит к сульфатации батареи, уменьшая ее емкость и срок службы.



Сульфатация.
Если свинцово-кислотную батарею оставить незаряженной, начинается процесс сульфатации - наибольший «убийца» батареи. Серная кислота электролита оседает на пластинах и образует сульфат свинца, ухудшающий ток между ними. Если процесс не остановить, батарея пойдет на свалку.

Десульфатация. На этом этапе все зарядные устройства СТЕК посылают серии импульсов высокого тока и вольтажа, что не только убирает сульфат свинца с пластин батареи, но и «оживляет» электролит, который, в свою очередь, перемешивается с кислотой и обращает вспять процесс сульфатации.